• Title/Summary/Keyword: Coercive voltage

Search Result 69, Processing Time 0.028 seconds

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

Impact of Remanent Polarization and Coercive Field on Threshold Voltage and Drain-Induced Barrier Lowering in NCFET (negative capacitance FET) (NCFET (negative capacitance FET)에서 잔류분극과 항전계가 문턱전압과 드레인 유도장벽 감소에 미치는 영향)

  • Hakkee Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The changes in threshold voltage and DIBL were investigated for changes in remanent polarization Pr and coercive field Ec, which determine the characteristics of the P-E hysteresis curve of ferroelectric in NCFET (negative capacitance FET). The threshold voltage and DIBL (drain-induced barrier lowering) were observed for a junctionless double gate MOSFET using a gate oxide structure of MFMIS (metal-ferroelectric-metal-insulator-semiconductor). To obtain the threshold voltage, series-type potential distribution and second derivative method were used. As a result, it can be seen that the threshold voltage increases when Pr decreases and Ec increases, and the threshold voltage is also maintained constant when the Pr/Ec is constant. However, as the drain voltage increases, the threshold voltage changes significantly according to Pr/Ec, so the DIBL greatly changes for Pr/Ec. In other words, when Pr/Ec=15 pF/cm, DIBL showed a negative value regardless of the channel length under the conditions of ferroelectric thickness of 10 nm and SiO2 thickness of 1 nm. The DIBL value was in the negative or positive range for the channel length when the Pr/Ec is 25 pF/cm or more under the same conditions, so the condition of DIBL=0 could be obtained. As such, the optimal condition to reduce short channel effects can be obtained since the threshold voltage and DIBL can be adjusted according to the device dimension of NCFET and the Pr and Ec of ferroelectric.

Polarization Characteristics of SBN Thin Film by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법에 의한 SBN 박막의 분극특성)

  • Kim, Jin-Sa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1175-1177
    • /
    • 2011
  • The SBN thin films were deposited on Pt/Ti/$SiO_2$/Si and p-type Si(100) substrate by rf magnetron sputtering method using $Sr_{0.7}Bi_{2.3}Nb_2O_9$ ceramic target. SBN thin films deposited were annealed at 600~800[$^{\circ}C$] by furnace in oxygen atmosphere during 40min. The polarization characteristics have been investigated to confirm the possibility of the SBN thin films for the application to destructive read out ferroelectric random access memory. The maximum remanent polarization and the coercive voltage are 0.6[${\mu}C/cm^2$], 1.2[V] respectively at annealing temperature of 800[$^{\circ}C$]. The leakage current density was the $2.57{\times}10^{-6}[A/cm^2]$ at an applied voltage of 5[V] at annealing temperature of 650[$^{\circ}C$]. Also, the fatigue characteristics of SBN thin films did not change up to $10^8$ switching cycles.

La doping into $Pb(Zr,\;Ti)O_{3}$ capacitors on domain structures

  • Yang, Bee-Lyong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.157-160
    • /
    • 2002
  • The ferroelectric domain variation and electrical performance of $Pb(Zr,Ti)O_{3}$ (PZT) based capacitors through La additions were systematically studied. La substitution up to 10 % was performed to lower the coercive and saturation voltages of epitaxial ferroelectric capacitors grown on Si using a (Ti_{0.9}Al_{0.1})N/Pt$ conducting barrier composite. Ferroelectric capacitors substituted with 10 % La show significantly lower coercive voltage compared to capacitors with 0 % and 3 % La. This is attributed to a systematic microstructure change into $180^{\circ}C$ domain and decrease in the tetragonality (i.e., c/a ratio) of the ferroelectric phase. These capacitors show promise as storage elements in low power memory architectures.

Poling-dependent Ferroelectric Properties of SBN30 Thin Films (분극에 의한 SBN30 박막의 강유전특성 변화)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, He-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.309-312
    • /
    • 2002
  • Ferroelectric $Sr_{0.3}Ba_{0.7}Nb_{2}O_{6}$ (SBN30) thin films were deposited on Pt/Ti/$SiO_{2}$/Si(100) substrates by ion beam sputtering. During annealing treatment at $750^{\circ}C$, poling was attempted by applying dc voltage bias across polished surfaces. Phase relation, microstructure and crystallization behavior were examined using XRD and FE-SEM. Ferroelectric hysteresis characteristics were also determined where both remanent polarization and coercive values decreased with the increase of bias voltage. The measured remanent polarization and coercive field values at 5 V and 10 V bias were $36{\mu}C/cm^2$, $10{\mu}C/cm^2$ and 100kV /cm, 80kV /cm, respectively.

  • PDF

Frequency Characteristics of Coercive Field in Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Film (강유전성 폴리(비닐리덴 플로라이드-트리플로로에틸렌) 박막의 항전계의 주파수 특성 분석)

  • Zhang, Ting;Rahman, Sheik Abdur;Khan, Shenawar Ali;Lee, Kwang-Man;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1206-1212
    • /
    • 2018
  • In this study, the polarization reversal characteristics of thin film capacitors with a thickness of 100 nm or less fabricated with ferroelectric polymer were measured and analyzed. For the fixed film thickness, polarization reversal occurred at higher coercive fields as the applied maximum electric field increased. For the fixed maximum electric field, polarization reversal occurred at the same coercive field irrespective of the thickness of the thin film. The proportional constant values between the logarithmic electric field and the logarithmic scale frequency were $0.12{\pm}0.01$ for all measurements. As a result, the ferroelectric polymer capacitors consistently exhibited polarization reversal characteristics without any size effects up to a thickness of 40 nm. This study shows the possibility of a polymer memory device that can operate at low voltage, which is useful for predicting the behavior of a low-voltage operating polymer memory device.

High speed performance of Pb(Zr,Ti)O$_3$ capacitors through lattice engineering (격자 조정을 통한 PZT커패시터의 고속동작 성능)

  • Yang, B.L.
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • High speed performance of ferroelectric Pb(Zr,Ti)$O_3$ (PZT) based capacitors is reported. La substitution up to 10% was performed to systematically lower the coercive and saturation voltages of epitaxial ferroelectric capacitors grown on Si using a ($Ti_{0.9}$ /$Al_{0.1}$ )N/Pt conducting barrier composite. Ferroelectric capacitors substituted with 10% La show significantly lower coercive voltage compared to capacitors with 0% and 3% La. This is attributed to a systematic decrease in the tetragonality (i.e., c/a ratio) of the ferroelectric phase. Furthermore, the samples doped with 10% La showed dramatically better retention and pulse width dependent polarization compared to the capacitors with 0% and 3% La. These capacitors show promise as storage elements in low power high density memory architectures.

Characteristics of Ferroelectric SrBi2Ta2O9 Thin Films deposited by Plasma-Enhanced Atomic Layer Deposition (플라즈마 원자층증착법에 의해 제조된 강유전체 SrBi2Ta2O9박막의 특성)

  • 신웅철;류상욱;유인규;윤성민;조성목;이남열;유병곤;이원재;최규정
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.35-35
    • /
    • 2003
  • Recent progress in the integration of the ferroelectric random access memories (FRAM) has attracted much interest. Strontium bismuth tantalate(SBT) is one of the most attractive materials for use in nonvolatile-memory applications due to low-voltage operations, low leakage current, and its excellent fatigue-free property. High-density FRAMs operated at a low voltage below 1.5V are applicable to mobile devices operated by battery. SBT films thinner than 0.1 #m can be operated at a low voltage, because the coercive voltage (Vc) decreases as the film thickness is reduced. In addition, the thickness of the SBT film will have to be reduced so it can fit between adjacent storage nodes in a pedestal type capacitor in future FRAMs.

  • PDF

Effect of Isotropic Strain on Properties of Amorphous Magnetic films (아몰퍼스자성박막의 특성에 미치는 등방성 스트레인의 영향)

  • 신광호;김흥근;김영학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.478-480
    • /
    • 2001
  • Fe-base amorphous films exhibit large saturation magnetostriction and soft magnetic Properties, which make them suitable for strain sensor applications. Most important material properties for the performance of these elements are the superior soft magnetic properties, such as high permeability and small coercive force, as well as magnetoelastic properties. It is well known that the strain generated in film deposition and/or post-heat treatment processes is one of important material properties, which effects on the soft magnetic properties of the film via magnetoelastic coupling. In this study, the effect of an isotropic strain in plane of magnetic films have been performed experimently. Amorphous films with the composition of (F $e_{90}$ $Co_{10}$)$_{78}$S $i_{l2}$ $B_{10}$ were employed in this study. The film with 5${\mu}{\textrm}{m}$ thick was deposed onto the polyimide substrate with 50${\mu}{\textrm}{m}$ thick by virtue of RF sputtering. The film was subject to post annealing with a static magnetic field with 500Oe magnetic field intensity at 35$0^{\circ}C$ for 1 hour. The polyimide substrate with the film was bonded with an adhesive on PZT piezoelectric substrate with 600${\mu}{\textrm}{m}$ thick in applying voltage of 500V. The change in MH loops of films due to the isotropic strain was measured by using VSM. The coercive force was evaluated from MH loops. It has shown in the results that M-H loops of films are subject to change considerably with a dc voltage, resulting of the magnetization rotation from normal to plane direction as the applied voltage is changed from 500V to 250V.50V.V.

  • PDF

Characteristics of the Crystal Structure and Electrical Properties of Metal/Ferroelectric/Insulator/Semiconductor (Metal/Ferroelectric/Insulator/Semiconductor 구조의 결정 구조 및 전기적 특성에 관한 연구)

  • 신동석;최훈상;최인훈;이호녕;김용태
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.195-200
    • /
    • 1998
  • We have investigated the crystal structure and electrical properties of Pt/SBT/$CeO_2$/Si(MFIS) and Pt/SBT/Si(MFS) structures for the gate oxide of ferroelectric memory. XRD spectra and SEM showed that the SBT film of SBT/$CeO_2$/Si structure had larger grain than that of SBT/Si structure. Furthermore HRTEM showed that SBT/$CeO_2$/Si had 5 nm thick $SiO_2$layer and very smooth interface but SBT/Si had 6nm thick $SiO_2$layer and 7nm thick amorphous intermediate interface. Therefore, $CeO_2$film between SBT film and Si substrate is confirmed as a good candidate for a diffusion barrier. The remanent polarization decreased and coercive voltage increased in Pt/SBT/$CeO_2/Pt/SiO_2$/Si structure. This effect may increase memory window of MFIS structure directly related to the coercive voltage. From the capacitance-voltage characteristics, the memory of Pt/SBT(140 nm)/$CeO_2$(25 nm)/Si structure were in the range of 1~2 V at the applied voltage of 4~6 V. The memory window increased with the thickness of SBT film. These results may be due to voltage applied at SBT films. The leakage currents of Pt/SBT/$CeO_2$/Si and Pt/SBT/Si were $ 10^8A/\textrm{cm}^2$ and $ 10^6 A/\textrm{cm}^2$, respectively.

  • PDF