• Title/Summary/Keyword: Coelomic Fluid Proteins

Search Result 4, Processing Time 0.015 seconds

Involvement of GTP-Binding Proteins in Stage-Specific Receptor-Mediated Endocytosis of Coelomic Fluid Proteins into Oocytes of Pseudopotamilla occelata (안점의 꽃갯지렁이 난포세포로 체강액 단백질의 단계특이적 유입을 위한 GTP-Binding Protein의 개입)

  • 남현정;강화선;이양림
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.292-298
    • /
    • 1996
  • Receptor-mediated endocytosis of coelomic fluid proteins (CP), yolk precursor proteins, appears to be regulated by multiple GTP-binding proteins during oogenesis of a polychaete, Pseudopotamilla occelata. Transport of 125 I-CP into the oocytes of intermediate size class, at which CP is the most actively transported, is enhanced by GTP but inhibited by GTP analogues, either GTPrS or GTP$\beta$S. The effects of GTP and GTPrS on the transport were also confirmed by tracing internalization of gold-labeled CP with transmission electron microscope. Internalization of gold-labeled CP into the yolk granules was enhanced by GTP but inhibited by GTPrS.

  • PDF

Regulatgion of the Transport of Vitellogenin by Heterotrimeric G-Proteins during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Yi, Bong-Kyung;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.93-97
    • /
    • 1998
  • Coelomoic fluid protein (CP), a vitellogenin contained in the coelomic fluid of polychaetes, is transported by receptor-mediated endocvtosis that is controlled by GTP-binding proteins. Transport of 125l-CP was markedly inhibited by AlF4 and toxins such as cholera toxin and pertussis toxin. These effects appear to be mediated by cAMP, since 125l-CP transport was also greatly inhibited by dibutyryl cAMP. The results strongly suggest that hetero trimeric G-protein is involved in the regulation of 125l=CP transport through the activation of adenylyl cyclase. Immunoblotting tests with antibodies against Gsa and Gia subunits showed a Gsa subunit of 45 kDa in the membrane of oocytes of intermediate and large size classes and a Gia subunit of 41 kDa only in the oocytes of the intermediate size class.

  • PDF

Receptor-mediated Transport of Vitellogenin during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Lee, Bong-Gyeong;Nam, Jung-Hyeon;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.341-344
    • /
    • 1997
  • Receptor-mediated endocytosis has been suggested for a stage-specific transport mechanism of vitellogenin into the oocytes of a sabellid poly chaete, Pseudopotamilla occelata. Membrane proteins of oocytes of three size classes, including small (30-70 $\mu\textrm{m}$ in diameter), intermediate (70-140 $\mu\textrm{m}$ in diameter) and large (180-200 $\mu\textrm{m}$ in diameter), showed a atage-specific variation. Coelomic fluid proteins (CP), ass$\mu\textrm{m}$ed to be vitellogenin, consists of several proteins, which showed quite a different pattern from that of yolk proteins. Incorporation of $^{125}I$-CP into the oocytes of the intermediate size class almost linearly increases with time, showing a contrast to the pattern of the large size class, in which the incorporation is low and approaches a plateau, suggesting the vitellogenin transports by a regulated process only in the intermediate size class. Vitellogenin receptor proteins were identified to be 60 kDa and 68 kDa only in the intermediate size class by a ligand blotting test.

  • PDF

Physiological Studies on the Function of Biological Membrane: Structural Changes of the Vitelline Envelopes during Oogenesis of a Polychaete, Nectoneanthes oxypoda (생체막의 기능에 대한 생리학적 연구: 갯지렁이 Nectoneanthes oxypoda의 난자형성단계에 따른 난황막의 구조적 변화)

  • Lee, Yang-Rim
    • Applied Microscopy
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 1990
  • Structural changes of the vitelline envelopes during oogenesis of a polychaete, Nectoneanthes oxypoda, were examined with a scanning electron micrscope. Oocytes grow in the same coelomic fluid to the final stage, but the surface appears to change in the structure during oogenesis. Projections, which were identified to be microvilli, change in shape, number and size. Short microvilli, which cover the surface of oocyte of $33{\mu}m$ diameter densely, grow in length, reaching a maximum at the stage of $73{\mu}m$. The number of microvilli increases with the stages of oogenesis, reaching a plateau at the stage of $82{\mu}m$. The observations suggest that control of material transport including yolk precursor proteins may be correlated with the structural changes in the microvilli.

  • PDF