• 제목/요약/키워드: Coefficient of influence

검색결과 2,185건 처리시간 0.03초

유량 지니계수를 이용한 유황분석방안 (Flow regime analysis method by using discharge Gini coefficient)

  • 박태선
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1223-1232
    • /
    • 2021
  • 본 연구에서는 연중 일유량의 불균등 정도를 파악하기 위해 "유량 지니계수"라는 새로운 개념의 분석방법을 제시한다. 유량 지니계수는 오름차순한 연중 일유량 발생일자의 누계백분율과 일최빈유량의 오름차순 누계백분율과의 면적관계를 이용하여 산정한다. 유량 지니계수는 0~1 사이의 값으로 표현되며, 불균등의 정도는 5단계로 구분할 수 있다. 유량 지니계수를 이용하면 상류 지점에 대한 하류 지점의 유량 안정도를 산정할 수 있다. 또한, 유황분석 기준유량별로 불균등에 미치는 영향의 정도를 수치적으로 파악할 수 있다. 4대강 본류 상·하류 8개 지점의 장기간 일유량 자료를 이용하여 유량 지니계수의 적용성을 검토하였다. 유량지니계수는 상류 댐에 의한 하류에서의 유량조절 효과를 분석하는 데에도 활용될 수 있을 것이다.

모애착과 또래애착이 아동의 친구간 갈등해결전략에 미치는 영향 (Influence of Mother and Peer Attachment on Conflict Resolution Strategies of Children)

  • 정선현;이희영
    • 수산해양교육연구
    • /
    • 제24권6호
    • /
    • pp.793-805
    • /
    • 2012
  • This study investigated the influence of mother and peer attachment on conflict resolution strategies of children. Following research questions were established. First, what is the influence of mother and peer attachment on conflict resolution strategies of children? Second, does the influence of mother and peer attachment on conflict resolution strategies of children differ according to sex? Third, what is the relative influence of mother and peer attachment on conflict resolution strategies of children? 485 fifth graders(male, 184; female, 163) from elementary schools located in Busan participated in this study and completed Inventory of Parent and Peer Attachment and Conflict Resolution Strategies Scale. Collected data were analyzed using t-test, Pearson Correlation Coefficient, Simple Regression and Multiple Regression Analysis. Major findings of this study were summarized as follows: First, both mother and peer attachment influenced on compromising and integration, avoiding and obliging strategies although the degree of influence were different. Second, the influence of mother and peer attachment on conflict resolution strategies differ according to gender. Third, the influence of peer attachment on conflict resolution strategies were greater than the one of mother attachment. Finally the significance of this study were presented with comments on limitations of this study.

하계해석을 이용한 수직방향 지진계수 영향에 따른 비탈면의 안정성 평가 연구 (A Study on the Estimation of Slope Stability under the Influence of the Vertical Direction Seismic Coefficient Using Lower Bound Analysis)

  • 최상호;김종민;김용수
    • 한국지반공학회논문집
    • /
    • 제28권12호
    • /
    • pp.123-131
    • /
    • 2012
  • 최근에 발생한 아이티지진, 칠레지진의 지진파 기록에서 일반적으로 비탈면 안정해석에서 무시되었던 수직방향 지진가속도 성분이 크게 나타났다. 특히, 수직방향 지진성분은 진원이 내륙에 위치한 경우 더욱 뚜렷하게 나타난다. 그러므로 설계에 수직방향 지진성분을 고려하지 않은 지반 구조물들은 많은 인명과 재산 피해를 가져올 수 있다. 따라서, 본 연구는 지진계수비에 따른 수평방향 항복지진계수의 하계해를 산정하였고, 비탈면 안정성에 미치는 영향을 평가하였다. 또한, 한계상태 수직방향 지진계수의 방향(상향, 하향)을 결정할 수 있는 관계식을 제안하였다.

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry

  • Shin, Sung Woo;Lee, Jiyong;Kim, Jeong-Su;Shin, Joonwoo
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.73-89
    • /
    • 2016
  • The stress dependence of ultrasonic wave velocity is known as the acoustoelastic effect. This effect is useful for stress monitoring if the acoustoelastic coefficient of a subject medium is known. The acoustoelastic coefficients of metallic materials such as steel have been studied widely. However, the acoustoelastic coefficient of concrete has not been well understood yet. Basic constituents of concrete are water, cement, and aggregates. The mix proportion of those constituents greatly affects many mechanical and physical properties of concrete and so does the acoustoelastic coefficient of concrete. In this study, influence of the water-cement ratio (w/c ratio) and the fine-coarse aggregates ratio (fa/ta ratio) on the acoustoelastic coefficient of concrete was investigated. The w/c and the fa/ta ratios are important parameters in mix design and affect wave behaviors in concrete. Load-controlled uni-axial compression tests were performed on concrete specimens. Ultrasonic wave measurements were also performed during the compression tests. The stretching coda wave interferometry method was used to obtain the relative velocity change of ultrasonic waves with respect to the stress level of the specimens. From the experimental results, it was found that the w/c ratio greatly affects the acoustoelastic coefficient while the fa/ta ratio does not. The acoustoelastic coefficient increased from $0.003073MPa^{-1}$ to $0.005553MPa^{-1}$ when the w/c ratio was increased from 0.4 to 0.5. On the other hand, the acoustoelastic coefficient changed in small from $0.003606MPa^{-1}$ to $0.003801MPa^{-1}$ when the fa/ta ratio was increased from 0.3 to 0.5. Finally, it was also found that the relative velocity change has a linear relationship with the stress level of concrete.

동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가 (The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient)

  • 송준혁;박정민;채희창;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Experimental study on seepage characteristics of large size rock specimens under three-dimensional stress

  • Sun, Wenbin;Xue, Yanchao;Yin, Liming;Zhang, Junming
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.567-574
    • /
    • 2019
  • In order to study the effect of stress and water pressure on the permeability of fractured rock mass under three-dimensional stress conditions, a single fracture triaxial stress-seepage coupling model was established; By using the stress-seepage coupling true triaxial test system, large-scale rock specimens were taken as the research object to carry out the coupling test of stress and seepage, the fitting formula of permeability coefficient was obtained. The influence of three-dimensional stress and water pressure on the permeability coefficient of fractured rock mass was discussed. The results show that the three-dimensional stress and water pressure have a significant effect on the fracture permeability coefficient, showing a negative exponential relationship. Under certain water pressure conditions, the permeability coefficient decreases with the increase of the three-dimensional stress, and the normal principal stress plays a dominant role in the permeability. Under certain stress conditions, the permeability coefficient increases when the water pressure increases. Further analysis shows that when the gob floor rock mass is changed from high stress to unloading state, the seepage characteristics of the cracked channels will be evidently strengthened.

해양 구조물용 공조덕트 열유동에 관한 수치해석 (Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore)

  • 이중섭;이병호;진도훈
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.23-29
    • /
    • 2018
  • This study is about the distribution of heat transfer in air conditioning ducts used for marine vessels and oil drilling platforms. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. The experiment was to determine if the amount of heat transfer generated at the duct exit increased as the convective heat transfer coefficient increased. When the convective heat transfer coefficient was low, the temperature of the duct showed a relatively high temperature difference between the outside and inside of the duct due to the temperature influence of the internal fluid. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

해양 구조물용 공조덕트 열유동에 관한 수치해석 (Numerical Analysis on the Thermal and Fluid in Air Conditioning Duct for Marine Offshore)

  • 이중섭;이병호;진도훈
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.7-13
    • /
    • 2019
  • This study is about distributions of heat transfer in air conditioning duct used for marine and oil drilling ship. As the convective heat transfer coefficient increased, heat transfer was conducted dynamically to inside as it exited to the outlet of duct. So, it was checked that the amount of heat transfer generated at duct increased as the convective heat transfer coefficient increased. In case the convective heat transfer coefficient was low, the temperature of duct showed the relatively high temperature distribution due to the temperature influence of internal fluid as the heat transfer between the outside and inside of the duct. In case of temperature distribution generated the volume of the duct along the change of the convective heat transfer coefficient, it was found out that the temperature descended as heat transfer was promoted and the convective heat transfer coefficient increased.

초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향 (Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy)

  • 박재남;이철희
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.