• Title/Summary/Keyword: Coefficient estimates

Search Result 371, Processing Time 0.024 seconds

A Demand forecasting for Electric vehicles using Choice Based Multigeneration Diffusion Model (선택기반 다세대 확산모형을 이용한 전기자동차 수요예측 방법론 개발)

  • Chae, Ah-Rom;Kim, Won-Kyu;Kim, Sung-Hyun;Kim, Byung-Jong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.113-123
    • /
    • 2011
  • Recently, the global warming problem has arised around world, many nations has set up a various regulations for decreasing $CO_2$. In particular, $CO_2$ emissions reduction effect is very powerful in transport part, so there is a rising interest about development of green car, or electric vehicle in auto industry. For this reason, it is important to make a strategy for charging infra and forcast electric power demand, but it hasn't introduced about demand forecasting electric vehicle. Thus, this paper presents a demand forecasting for electric vehicles using choice based multigeneration diffusion model. In this paper, it estimates innovation coefficient, immitation coefficient in Bass model by using hybrid car market data and forecast electric vehicle market by year using potential demand market through SP(Stated Preference) experiment. Also, It facilitates more accurate demand forecasting electric vehicle market refelcting multigeneration diffusion model in accordance with attribute progress in development of electric vehicle. Through demand forecasting methodology in this paper, it can be utilized power supply and building a charging infra in the future.

Diffusion-weighted and Dynamic Contrast-enhanced MRI of Metastatic Bone Tumors: Correlation of the Apparent Diffusion Coefficient, $K^{trans}$ and $v_e$ values (골전이암의 확산강조영상과 역동적 조영증강 자기공명영상: 겉보기 확산계수, $K^{trans}$$v_e$ 값들의 상관관계)

  • Koo, Ji Hyun;Yoon, Young Cheol;Kim, Jae Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • Purpose : To investigate whether quantitative parameters derived from Diffusion-weighted magnetic resonance imaging (DW-MRI) correlate with those of Dynamic contrast-enhanced MRI (DCE-MRI). Materials and Methods: Thirteen patients with pathologically or clinically proven bony metastasis who had undergone MRI prior to treatment were included. The voxel size was $1.367{\times}1.367{\times}5mm$. A dominant tumor was selected and the apparent diffusion coefficient (ADC) value and DCE-MRI parameters were obtained by matching voxels. DCE-MRI data were analyzed yielding estimates of $K^{trans}$ (volume transfer constant) and $v_e$. (extravascular extracellular volume fraction). Statistical analysis of ADC, $K^{trans}$, and $v_e$ value was conducted using Pearson correlation analyses. Results: Fifteen lesions in pelvic bones were evaluated. Of these, 11 showed a statistically significant correlation (P<0.05) between ADC and $K^{trans}$. The ADC and $K^{trans}$ were inversely related in 7 lesions and positively related in 4 lesions. This did not depend on the primary cancer or site of metastasis. The ADC and $v_e$ of 9 lesions correlated significantly. Of these, 4 lesions were inversely related and 5 lesions were positively related. Conclusion: Unlike our theoretic hypothesis, there was no consistent correlation between ADC values and $K^{trans}$ or between ADC values and $v_e$ in metastatic bone tumors.

An Analysis of Water Vapor Pressure to Simulate the Relative Humidity in Rural and Mountainous Regions (고해상도 상대습도 모의를 위한 농산촌 지역의 수증기압 분석)

  • Kim, Soo-ock;Hwang, Kyu-Hong;Hong, Ki-Young;Seo, Hee-Chul;Bang, Ha-Neul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.299-311
    • /
    • 2020
  • This paper analyzes the distribution of water vapor pressure and relative humidity in complex terrains by collecting weather observation data at 6 locations in the valley in Jungdae-ri, Ganjeon-myeon, Gurye-gun, Jeolla South Province and 14 locations in Akyang-myeon, Hadong-gun, Gyeongsang South Province, which form a single drainage basin in rural and mountainous regions. Previously estimated water vapor pressure used in the early warning system for agrometeorological hazard and actual water vapor pressure arrived at using the temperature and humidity that were measured at the highest density (1.5 m above ground) at every hour in the valley of Jungdae-ri between 19 December 2014 and 23 November 2015 and in the valley of Akyang between 15 August 2012 and 18 August 2013 were compared. The altitude-specific gradient of the observed water vapor pressure varied with different hours of the day and the difference in water vapor pressure between high and low altitudes increased in the night. The hourly variations in the water vapor pressure in the weather stations of the valley of Akyang with various topographic and ground conditions were caused by factors other than altitude. From the observed data of the study area, a coefficient that adj usts the variation in the water vapor pressure according to the specific difference in altitude and estimates it closer to the actual measured level was derived. Relative humidity was simulated as water vapor pressure estimated against the saturated water vapor pressure, thus, confirming that errors were further reduced using the derived coefficient than with the previous method that was used in the early warning system.

Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates (온도가 저서규조류 광합성 반응에 미치는 영향: 형광을 이용한 추정)

  • Yun, Mi-Sun;Lee, Choon-Hwan;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2009
  • Benthic diatoms are very important primary producers in understanding estuary ecosystems and their productions are largely varied by their photo-physiological characteristics. The short-term effects of increased temperature on the photosynthetic and photo-physiological characteristics of cultured different species of benthic diatoms (Navicula sp., Nitzschia sp., Cylindrotheca closterium, and Pleurosigma elongatum) were investigated by measuring their PSII-fluorescence kinetics using a Diving-PAM. Photosynthesis versus irradiance curves were measured every two hours at six different temperatures (10, 15, 20, 25, 30, and $35^{\circ}C$) for twenty-four hour. The effective quantum yield of PSII ($\Phi_{PSII}$) for most of the species showed a decreasing trend with increased temperature. The relative maximum electron transport rate (rETRmax) was significantly increased up to the optimum temperature level and then sharply decreased. Relative to the values of other parameters, the maximum light use coefficient ($\alpha$) was not substantially changed at lower temperature levels (<$30^{\circ}C$) but significantly decreased only at higher temperatures (30 and $35^{\circ}C$). The light saturation coefficient ($E_K$) mirrored the rETRmax temperature response. In regards to the temperature acclimation abilities of the four species with time, Navicula sp. and C. closterium acclimated to short-term changes in temperature through their photo-physiological adjustments.

Agreement and Reliability between Clinically Available Software Programs in Measuring Volumes and Normative Percentiles of Segmented Brain Regions

  • Huijin Song;Seun Ah Lee;Sang Won Jo;Suk-Ki Chang;Yunji Lim;Yeong Seo Yoo;Jae Ho Kim;Seung Hong Choi;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.959-975
    • /
    • 2022
  • Objective: To investigate the agreement and reliability of estimating the volumes and normative percentiles (N%) of segmented brain regions among NeuroQuant (NQ), DeepBrain (DB), and FreeSurfer (FS) software programs, focusing on the comparison between NQ and DB. Materials and Methods: Three-dimensional T1-weighted images of 145 participants (48 healthy participants, 50 patients with mild cognitive impairment, and 47 patients with Alzheimer's disease) from a single medical center (SMC) dataset and 130 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset were included in this retrospective study. All images were analyzed with DB, NQ, and FS software to obtain volume estimates and N% of various segmented brain regions. We used Bland-Altman analysis, repeated measures ANOVA, reproducibility coefficient, effect size, and intraclass correlation coefficient (ICC) to evaluate inter-method agreement and reliability. Results: Among the three software programs, the Bland-Altman plot showed a substantial bias, the ICC showed a broad range of reliability (0.004-0.97), and repeated-measures ANOVA revealed significant mean volume differences in all brain regions. Similarly, the volume differences of the three software programs had large effect sizes in most regions (0.73-5.51). The effect size was largest in the pallidum in both datasets and smallest in the thalamus and cerebral white matter in the SMC and ADNI datasets, respectively. N% of NQ and DB showed an unacceptably broad Bland-Altman limit of agreement in all brain regions and a very wide range of ICC values (-0.142-0.844) in most brain regions. Conclusion: NQ and DB showed significant differences in the measured volume and N%, with limited agreement and reliability for most brain regions. Therefore, users should be aware of the lack of interchangeability between these software programs when they are applied in clinical practice.

Genetic Parameter Estimation of Carcass Traits of Hanwoo Steers (한우 거세우의 도체형질에 대한 유전모수 추정)

  • Hwang, Jeong-Mi;Kim, Sidong;Choy, Yun-Ho;Yoon, Ho-Baek;Park, Cheol-Jin
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.613-620
    • /
    • 2008
  • The genetic parameters used in National Hanwoo Genetic Evaluation(NHGE) were needed to be monitored and updated periodically for accounting any possible changes in population parameters due to selection and environmental changes. Genetic parameters were estimated with single and two-trait models with MTDFREML package using 2,791 carcass records of steers collected from Hanwoo Progeny Test Program(HPTP). Single and two-trait models gave similar parameter estimates for all traits. The heritability estimates from single and two-trait models for carcass weight(CW), dressing percentage(DP), eye muscle area(EMA), back fat thickness(BFT) and marbling score(MS) were 0.30, 0.30, 0.37, 0.44 and 0.44, respectively. The heritability estimates for all the traits except BFT were slightly lower than those used in NHGE but seemed to be within the acceptable ranges. However, further monitoring is needed because the data might not have fully reflected the changes such as carcass grading standards in performance testing program. In order to shift statistical model of NHGE from single trait model to multiple-trait model, the genetic correlations between carcass traits were estimated with pairwise two-trait models. The genetic correlation coefficients between CW and DP, between CW and EMA, between CW and BFT and between CW and MS were 0.44, 0.63, 0.17 and 0.06, respectively. Those between DP and EMA, between DP and BFT and between DP and MS were 0.29, 0.40 and 0.20. Those between EMA and BFT and between EMA and MS were -0.24 and 0.15, respectively. The genetic correlation coefficient between BFT and MS was 0.03.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use (이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정)

  • BYUN, DO-SEONG;KIM, HYOWON;LEE, JOOYOUNG;LEE, EUNIL;PARK, KYUNG-AE;WOO, HYE-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.153-178
    • /
    • 2018
  • Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (${\psi}_{\nu}$), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values ($-0.001m\;s^{-1}$) and Root Mean Square Deviations (RMSD, $0.122m\;s^{-1}$). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the 'LMS without ${\psi}_{\nu}^{\prime}$ produced the best results, with only $0.191m\;s^{-1}$ of bias and $1.111m\;s^{-1}$ of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<$0.0001m\;s^{-1}$) and RMSD (<$0.012m\;s^{-1}$) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights ($z_0$) based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new $z_0$ parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and $z_0$ formulas within conventional wind profile formulas for situations characterized by strong wind (${\geq}33m\;s^{-1}$) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ${\leq}25m\;s^{-1}$.

A Study on the Stock Assessment and Management Implications of the Korean Aucha perch (Coreoperca herzi) in Freshwater: (1) Estimation of Population Ecological Characteristics of Coreoperca herzi in the Mid-Upper System of the Seomjin River (담수산 어류 꺽지 (Coreoperca herzi)의 자원 평가 및 관리 방안 연구: 섬진강 중.상류 수계에서 꺽지의 개체군 생태학적 특성치 추정 (1))

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • The ecological characteristics of the Korean Aucha perch, Coreoperca herzi, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The age was determined by counting the otolith annuli. The oldest fish observed in this study was 5 years old. Relationships between body length (BL) and body weight (BW) were $BW=0.0195BL^{3.08}$ ($R^2=0.966$) (p<0.01). Relationships between the otolith radius (R) and body length (BL) were BL=3.882R+1.66 ($R^2=0.944$). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=19.68\;cm$, $W_{\infty}=188.64\;g$, $K=0.17\;year^{-1}$ and $t_0=-1.46$ year. Therefore, growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=19.68$ ($1-e^{-0.17(t+1.46)}$) ($R^2=0.997$). The annual survival rate (S) was estimated to be $0.666\;year^{-1}$. The instantaneous coefficient of natural mortality (M) of estimated from the Zhang and Megrey method was $0.346\;year^{-1}$, and instantaneous coefficient of fishing mortality (F) was calculated $0.061\;year^{-1}$. From the estimates of survival rate (S), the instantaneous coefficient of total mortality(Z) was estimated to be $0.407\;year^{-1}$.

Estimation on Population Ecological Characteristics of Crucian Carp, Carassius auratus in the Mid-Upper System of the Seomjin River (섬진강 중.상류 수계에서 붕어 개체군의 생태학적 특성치 추정)

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.318-326
    • /
    • 2011
  • The population ecological characteristics of the Crucian carp, Carassius auratus, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The fish ranged in size from 95 to 288mm total length. The age was determined by counting the scale annulus. The scales displayed clear annulus that were used to estimate the age. The oldest fish observed in this study was 5 years old. Age-2 fishes were the most numerous in the sample(n=38), followed in frequency be age-3(n=22). Marginal index analysis validated the formation of a single annulus per year. The relationship between body length and body weight was BW = $0.0038BL^{3.73}$($R^2$=0.96) (p<0.01). The relationship between the scale radius and body length was BL = 2.362R+2.76($R^2$=0.89). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}$=33.2 cm, $W_{\infty}$=1,798.4 g, $K=0.20year^{-1}$ and $t_0$=-0.51year. Therefore, Growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=33.23$($1-e^{-0.20(t+0.51)}$)($R^2$=0.98). The annual survival rate was estimated to be 0.427year$^{-1}$. The instantaneous coefficient of natural mortality of estimated from the Zhang and Megrey method was $0.784year^{-1}$, and instantaneous coefficient of fishing mortality was calculated $0.067year^{-1}$. From the estimates of survival rate, the instantaneous coefficient of total mortality was estimated to be $0.851year^{-1}$.