• Title/Summary/Keyword: Coding dictionary

Search Result 21, Processing Time 0.024 seconds

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

Domain Adaptation Image Classification Based on Multi-sparse Representation

  • Zhang, Xu;Wang, Xiaofeng;Du, Yue;Qin, Xiaoyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2590-2606
    • /
    • 2017
  • Generally, research of classical image classification algorithms assume that training data and testing data are derived from the same domain with the same distribution. Unfortunately, in practical applications, this assumption is rarely met. Aiming at the problem, a domain adaption image classification approach based on multi-sparse representation is proposed in this paper. The existences of intermediate domains are hypothesized between the source and target domains. And each intermediate subspace is modeled through online dictionary learning with target data updating. On the one hand, the reconstruction error of the target data is guaranteed, on the other, the transition from the source domain to the target domain is as smooth as possible. An augmented feature representation produced by invariant sparse codes across the source, intermediate and target domain dictionaries is employed for across domain recognition. Experimental results verify the effectiveness of the proposed algorithm.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

An Improvement of Lossless Image Compression for Mobile Game (모바일 게임을 위한 개선된 무손실 이미지 압축)

  • Kim Se-Woong;Jo Byung-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.231-238
    • /
    • 2006
  • In this paper, the method to make lossless image compression that holds considerable part of total volume of mobile game has been proposed. To increase the compression rate, we compress the image by Deflate algorithm defined in RFC 1951 after reorganize it at preprocessing stage before conducting actual compression. At the stage of preprocessing, we obtained the size of a dictionary based on the information of image which is the feature of Dictionary-Based Coding, and increased the better compression rate than compressing in a general manner using in a way of restructuring image by pixel packing method and DPCM prediction technique. It has shown that the method increased 9.7% of compression rate compare with existing mobile image format, after conducting the test of compression rate applying the suggested compression method into various mobile games.

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images (명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법)

  • Lee, Gyuhyun;Quan, Tran Minh;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

A VLSI design and implementation of a single-chip encoder/decoder with dictionary search processor(DISP) using LZSS algorithm and entropy coding (LZSS 알고리즘과 엔트로피 부호를 이용한 사전 탐색 처리 장치를 갖는 부호기/복호기 단일-칩의 VLSI 설계 및 구현)

  • Jo, Sang Bok;Kim, Jong Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.17-17
    • /
    • 2001
  • 본 논문은 0.6㎛ CMOS 기술로 LZSS 알고리즘과 엔트로피 부호를 이용한 부호기/복호기 단일-칩의 본 논문은 0.6uul CMOS 기술로 LZSS 알고리즘과 엔트로피 부호를 이용한 부호기/복호기 단일-칩의 VLSI 설계 및 구현에 관하여 기술하였다. 처리 속도 50MHz를 갖는 사전탐색처리장치(DISP)의 메모리는 2K×Bbit 크기를 사용하였다. 이것은 매번 33개 클럭 중 한 개의 클럭은 사전의 WINDOW 배열을 갱신으로 사용하고 나머지 클럭은 주기마다 한 개의 데이터 기호를 바이트 단위로 압축을 실행한다. 결과적으로, LZSS 부호어 출력에 엔트로피 부호를 적용하여 46%의 평균 압축률을 보였다. 이것은 LZSS에 보다 7% 정도의 압축 성능이 향상된 것이다.

Rain Detection via Deep Convolutional Neural Networks (심층 컨볼루셔널 신경망 기반의 빗줄기 검출 기법)

  • Son, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.81-88
    • /
    • 2017
  • This paper proposes a method of detecting rain regions from a single image. More specifically, a way of training the deep convolutional neural network based on the collected rain and non-rain patches is presented in a supervised manner. It is also shown that the proposed rain detection method based on deep convolutional neural network can provide better performance than the conventional rain detection method based on dictionary learning. Moreover, it is confirmed that the application of the proposed rain detection for rain removal can lead to some improvement in detail representation on the low-frequency regions of the rain-removed images. Additionally, this paper introduces the rain transfer method that inserts rain patterns into original images, thereby producing rain effects on the resulting images. The proposed rain transfer method could be used to augment rain patterns while constructing rain database.

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.