• Title/Summary/Keyword: Coding Learning

Search Result 351, Processing Time 0.03 seconds

Neuro-Fuzzy Modeling of Complex Nonlinear System Using a mGA (mGA를 사용한 복잡한 비선형 시스템의 뉴로-퍼지 모델링)

  • Choi, Jong-Il;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2305-2307
    • /
    • 2000
  • In this paper we propose a Neuro-Fuzzy modeling method using mGA for complex nonlinear system. mGA has more effective and adaptive structure than sGA with respect to using the changeable-length string. This paper suggest a new coding method for applying the model's input and output data to the number of optimul rules of fuzzy models and the structure and parameter identifications of membership function simultaneously. The proposed method realize optimal fuzzy inference system using the learning ability of Neural network. For fine-tune of the identified parameter by mGA, back-propagation algorithm used for optimulize the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through compare with ANFIS.

  • PDF

The Model of an Agent to learn Users' Action using DNA Coding Method (DNA 코딩 방법을 이용한 사용자의 행위를 학습하는 에이전트 모델)

  • Yun, Hyo-Gun;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.319-322
    • /
    • 2002
  • 현재 에이전트는 강화 학습 모델을 토대로 사용자의 간섭 없이 사용자 의도를 파악하며 능동적으로 행동하는 기술들이 발달되어 왔다. 하지만 인터넷을 기반으로 한 계획이나 학습 등을 위하여 보다 지적인 능력을 갖춘 에이전트의 기술이 요구된다. 따라서 본 논문에서는 DNA 코딩 기법을 이용하여 사용자의 프로파일을 학습하고. 사용자를 분류하는 AUA(Agent for learning Users' Action)를 제안하고자 한다. AUA는 사용자 학습 에이전트로 사용자의 행위를 관찰하고 행위서열을 생성하고 구분함으로써, 사용자의 관심정도를 보다 세밀하게 분석하고 계획할 수 있다. 또한 AUA는 에이전트간에 관계를 설정함으로 사용자에게 보다 나은 정보 검색을 지원할 수 있다.

  • PDF

A study on the competitive learning algorithm for robust vector qantization to transmit speech signal (벡터 양자화를 위한 학습 알고리즘을 이용한 음성 전송 기술에 관한 연구)

  • Hong, Kang-You;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3150-3152
    • /
    • 1999
  • The efficient representation and encoding of signals with limited resources, e.g., finite storage capacity and restricted transmission bandwidth, is a fundamental problem in technical information processing systems. Typically under realistic circumstances, the encoding and communication of message has to deal with different sources of noise and disturbances. In this paper, I propose a unifying approach to data compression by robust vector quantization, which explicitly deals with channel noise, and random elimination of prototypes. The resulting algorithm is able to limit the detrimental effect of noise in a very general communication scenario. In this paper, based on the robust vector quantization I have an experiment about speech coding.

  • PDF

A Study in Relationship between Facial Expression and Action Unit (Manifold Learning을 통한 표정과 Action Unit 간의 상관성에 관한 연구)

  • Kim, Sunbin;Kim, Hyeoncheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.763-766
    • /
    • 2018
  • 표정은 사람들 사이에서 감정을 표현하는 강력한 비언어적 수단이다. 표정 인식은 기계학습에서 아주 중요한 분야 중에 하나이다. 표정 인식에 사용되는 기계학습 모델들은 사람 수준의 성능을 보여준다. 하지만 좋은 성능에도 불구하고, 기계학습 모델들은 표정 인식 결과에 대한 근거나 설명을 제공해주지 못한다. 이 연구는 표정 인식의 근거로서 Facial Action Coding Unit(AUs)을 사용하기 위해서 CK+ Dataset을 사용하여 표정 인식을 학습한 Convolutional Neural Network(CNN) 모델이 추출한 특징들을 t-distributed stochastic neighbor embedding(t-SNE)을 사용하여 시각화한 뒤, 인식된 표정과 AUs 사이의 분포의 연관성을 확인하는 연구이다.

Neuro-Fuzzy Modeling for Nonlinear System Using VmGA (VmGA를 이용한 비선형 시스템의 뉴로-퍼지 모델링)

  • Choi, Jong-Il;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1952-1954
    • /
    • 2001
  • In this paper, we propose the neuro-fuzzy modeling method using VmGA (Virus messy Genetic Algorithm) for the complex nonlinear system. VmGA has more effective and adaptive structure than sGA. in this paper, we suggest a new coding method for applying the model's input and output data to the optimal number of rules in fuzzy models and the structure and parameter identification of membership functions simultaneously. The proposed method realizes the optimal fuzzy inference system using the learning ability of neural network. For fine-tune of parameters identified by VmGA, back- propagation algorithm is used for optimizing the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through comparing with ANFIS.

  • PDF

Deep Learning based Inter Prediction Coding Technique (딥러닝 기반 화면 간 예측 부호화 기법)

  • Lee, Jung Kyung;Kang, Jewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.276-279
    • /
    • 2018
  • 본 논문에서는 비디오 부호화 과정 중 화면 간 예측 부호화 과정에 딥러닝을 적용하여 부호화 효율을 제고하는 알고리즘을 제안한다. 보다 구체적으로 딥러닝으로 생성한 가상의 픽쳐를 현재 프레임의 참조 픽쳐로 사용하는 방법에 대해 설명한다. 부호화 과정에서 복원된 픽쳐 두 장을 이용하여 가상의 보간 픽쳐를 생성하고 생성된 보간 픽쳐를 참조 프레임으로 사용하여 화면 간 예측의 효율을 높인다. 실험에 따르면 참조 픽쳐 리스트를 수정하여 참조 구조를 변경함으로써 HEVC 참조 코덱인 HM 16.9 대비 평균 1.4%의 BD-rate 감소 효율을 제공하였다.

  • PDF

Deep-learning based Object Detection in Thermal Video Using Compressed-Domain Information (열영상에서 압축 도메인 정보를 이용한 딥러닝 기반 객체 탐지 방법)

  • Byeon, JooHyung;Nam, Gunook;Park, Jangsoo;Lee, Jongseok;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.160-162
    • /
    • 2018
  • 본 논문에서는 압축 영역에서 열 영상을 이용한 딥러닝 기반의 객체 검출 방법을 제안한다. 비디오 압축 표준인 High Efficiency Video Coding(HEVC)를 이용하여 부보화된 비트스트림으로부터 Intra Prediction Mode(IPM), Prediction Unit Size(PUS), Transform Unit Size(TUS)를 추출하고 3 채널 영상으로 변환하고 객체 검출 네트워크인 YOLO 에 입력으로 넣어주어 최종적으로 객체의 위치 및 객체의 종류를 예측한다. 실험결과로써 복원된 열 영상과 검출된 결과를 주관적으로 보여줌으로써 압축영역에서 열영상을 이용한 객체 검출이 가능함을 보인다.

  • PDF

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

A Deep Learning-Based Image Semantic Segmentation Algorithm

  • Chaoqun, Shen;Zhongliang, Sun
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.98-108
    • /
    • 2023
  • This paper is an attempt to design segmentation method based on fully convolutional networks (FCN) and attention mechanism. The first five layers of the Visual Geometry Group (VGG) 16 network serve as the coding part in the semantic segmentation network structure with the convolutional layer used to replace pooling to reduce loss of image feature extraction information. The up-sampling and deconvolution unit of the FCN is then used as the decoding part in the semantic segmentation network. In the deconvolution process, the skip structure is used to fuse different levels of information and the attention mechanism is incorporated to reduce accuracy loss. Finally, the segmentation results are obtained through pixel layer classification. The results show that our method outperforms the comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU).

Neural Feature Compression with Block-based Feature Resizing (블록 기반 특징맵 크기 조정을 이용한 DNN 특징맵 압축)

  • Yoon, Curie;Jeong, Hye Won;Kim, Yeongwoong;Kim, Younhee;Jeong, Se-Yoon;Kim, Hui Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1203-1206
    • /
    • 2022
  • 자율주행, IoT 등 많은 양의 영상 정보를 실시간으로 처리해야 하는 기술과 mobile device 등의 기기에서 Machine Learning 연산을 하는 소프트웨어들이 등장함에 따라 사람을 위한 영상을 출력하는 영상 부호화 기술 대신 기계의 vision task 성능을 위해 특화된 영상 부호화 기술의 필요성이 대두됐다. 본 연구에서는 영상에서 추출한 특징맵을 Neural-Net based Video Coding 모델을 이용해 압축률과 기계의 vision task 성능을 동시에 최적화한다. 또한, 하드웨어 친화적인 block-based 처리와 이로 인한 성능 저하를 최소화하기 위해 적응적 resizing 방식을 제안한다.

  • PDF