Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.453-454
/
2021
본 논문에서는 딥아이(DIY) 블록 프로그래밍과 라즈베리파이의 피지컬 컴퓨팅을 활용해 엑츄에이터와 센서를 제어하고 센서를 통해 수집한 데이터를 전처리해 인공지능에 활용함으로써 효율적인 인공지능 교육 방식을 제안한다. 해당 방식은 블록코딩 방식을 사용함으로써 문자코딩 대비 오타을 줄이고 문법 구애율을 낮춤으로써 프로그래밍 입문자의 구문적 어려움을 최소화하고 개념과 전략적 학습을 극대화한다. 블록프로그래밍 사용언어로 파이썬을 채택해 입문자의 편의를 도모하고 파일처리, 크롤링, csv데이터 추출을 통해 인공지능 교육에 활용한다.
Journal of The Korean Association of Information Education
/
v.22
no.3
/
pp.325-333
/
2018
This study analyzes students' motivation for learning when applying SW-STEAM education using Flipped Learning. As a main content of the study, we developed a program that combines SW education with existing subjects and utilized flipped learning as a method. Elementary school students were given an education program. The data were collected through pre and post-test of learning motivation. As a result of analysis, the SW-STEAM program based on flipped learning has improved attention, relevance and confidence. We expect that the results of the SW-STEAM education program developed in this study and the learning motivation analysis will help in the direction of the SW-STEAM education and be useful as a basic resources for settling in class.
Journal of The Korean Association of Information Education
/
v.24
no.2
/
pp.157-165
/
2020
As interest in software education has increased, discussions on teaching, learning, and evaluation method it have also been active. One of the problems of software education teaching method is that the instructor cannot grasp the content of coding in progress in the learner's computer in real time, and therefore, instructors are limited in providing feedback to learners in a timely manner. To overcome this problem, in this study, we developed a software education support system that grasps the real-time learner coding situation under block-based programming environment by applying a learning analysis technique and delivers it to the instructor, and visualizes the data collected during learning through the Hadoop system. The system includes a presentation layer to which teachers and learners access, a business layer to analyze and structure code, and a DB layer to store class information, account information, and learning information. The instructor can set the content to be learned in advance in the software education support system, and compare and analyze the learner's achievement through the computational thinking components rubric, based on the data comparing the stored code with the students' code.
Cho, Seunghyun;Kim, Younhee;Lim, Woong;Kim, Hui Yong;Choi, Jin Soo
Journal of Broadcast Engineering
/
v.23
no.3
/
pp.383-394
/
2018
In this paper, we investigate image and video compression techniques based on deep learning which are actively studied recently. The deep learning based image compression technique inputs an image to be compressed in the deep neural network and extracts the latent vector recurrently or all at once and encodes it. In order to increase the image compression efficiency, the neural network is learned so that the encoded latent vector can be expressed with fewer bits while the quality of the reconstructed image is enhanced. These techniques can produce images of superior quality, especially at low bit rates compared to conventional image compression techniques. On the other hand, deep learning based video compression technology takes an approach to improve performance of the coding tools employed for existing video codecs rather than directly input and process the video to be compressed. The deep neural network technologies introduced in this paper replace the in-loop filter of the latest video codec or are used as an additional post-processing filter to improve the compression efficiency by improving the quality of the reconstructed image. Likewise, deep neural network techniques applied to intra prediction and encoding are used together with the existing intra prediction tool to improve the compression efficiency by increasing the prediction accuracy or adding a new intra coding process.
Journal of The Korean Association For Science Education
/
v.39
no.3
/
pp.321-335
/
2019
This study aims to explore the influencing factors and the process of enhancing science self-efficacy (SSE) and to lay the foundation in understanding science self-efficacy of students. The ten categories related to the science self-efficacy were derived through the coding of the interview data based on the grounded theory and paradigm analysis to develop a process model of science self-efficacy improvement. Through the process analysis, four cyclical phases were found in the process of enhancing SSE: 'Entering into learning science' phase, 'enhancing SSE' phase, 'adjustment' phase, and 'result' phase. More specifically, the phase of 'entering into learning science' is where students choose science track and stimulated to construct SSE. The phase of 'enhancing SSE' is where students taking a science track actively learn science and perform science activities. In the phase of 'adjustment', students come to have successful performance about learning science and performing science activities by using diverse strategies. Finally, 'result' phase indicates different appearances of students depending on SSE levels. The phases were non-linear and periodically repeat depending on situation. The core category in the selective coding was indicated to be 'enhancing science self-efficacy.' Students' SSE form by learning science and performing science activities. These finding may help better understand the behavior of students who are taking a science track by facilitating effective science learning through the increase of their SSE levels.
The rapid development of science & technology and the globalization of society have accelerated the fractionation and specialization of academic disciplines. Accordingly, Korean colleges and universities are continually dropping antiquated courses to make room for new courses that better meet societal demands. With emphasis placed on providing students with a broader range of choices in terms of course selection, compulsory courses have given way to elective courses. On average, 4 year institutions of higher learning in Korea currently offer somewhere in the neighborhood of 1,000 different courses yearly. The classification of an ever growing list of courses offered and the practical use of such data would not be possible without the aid of computers. For example, if we were able to show the pre/post requisite relationship among various courses as well as the commonalities in substance among courses, such data generated regarding the interrelationship of different courses would undoubtedly greatly benefit the students, as well as the professors, during course registration. Furthermore, the GT system's relatively simple approach to course classification and coding will obviate the need for the development of a more complicated keyword based search engine, and hopefully contribute to the standardization of the course coding scheme in the future..Therefore, as a sample case project, this study will use GT to classify and code all courses offered at the College of Engineering of K University, thereby developing a system that will facilitate the scanning of relevant courses.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.11
/
pp.46-52
/
2017
Along with the expansion of areas in which ICT and Internet of Things (IoT) devices are utilized, open source software has recently expanded its scope of applications to include computers, smart phones, and IoT devices. Hence, as the scope of open source software applications has varied, there have been increasing malicious attempts to attack the weaknesses of open source software. In order to address this issue, various secure coding programs have been developed. Nevertheless, numerous vulnerabilities are still left unhandled. This paper provides some methods to handle newly raised weaknesses based on the analysis of histories and patterns of previous open source vulnerabilities. Through this study, we have designed a weaknesses analysis system that utilizes weakness histories and pattern learning, and we tested the performance of the system by implementing a prototype model. For five vulnerability categories, the average vulnerability detection time was shortened by about 1.61 sec, and the average detection accuracy was improved by 44%. This paper can provide help for researchers studying the areas of weaknesses analysis and for developers utilizing secure coding for weaknesses analysis.
A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.
We introduce a learning system for the sight reading of simple drum sequences. Sight reading is a cognitive-motor skill that requires reading of music symbols and actions of multiple limbs for playing the music. The system provides knowledge of results (KR) pertaining to the learner's performance by color-coding music symbols, and guides the learner by indicating the corresponding action for a given music symbol using additional auditory or vibrotactile cues. To evaluate the effects of KR and guidance cues, three learning methods were experimentally compared: KR only, KR with auditory cues, and KR with vibrotactile cues. The task was to play a random 16-note-long drum sequence displayed on a screen. Thirty university students learned the task using one of the learning methods in a between-subjects design. The experimental results did not show statistically significant differences between the methods in terms of task accuracy and completion time.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.11
/
pp.144-151
/
1990
In this work Ohotomo et al., neural network model for learning and recognizing vowels is modified in order to reduce the time for learning and the possibility of incorrect recognition. In this modification, the finite bandwidth of formant frequencies of vowels are taken into consider-ations in coding input patterns. Computer simulations show that the modification reduces not only the possibility of incorrect recognition by about $30{\%}$ but also the time for learning by about $7{\%}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.