• Title/Summary/Keyword: Code Motion

Search Result 458, Processing Time 0.024 seconds

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

Scaled and unscaled ground motion sets for uni-directional and bi-directional dynamic analysis

  • Kayhan, Ali Haydar
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.563-588
    • /
    • 2016
  • In this study, solution models are proposed to obtain code-compatible ground motion record sets which can be used for both uni-directional and bi-directional dynamic analyses. Besides scaled, unscaled ground motion record sets are obtained to show the utility and efficiency of the solution models. For scaled ground motion sets the proposed model is based on hybrid HS-Solver which integrates heuristic harmony search (HS) algorithm with the spreadsheet Solver add-in. For unscaled ground motion sets HS based solution model is proposed. Design spectra defined in Eurocode-8 for different soil types are selected as target spectra. The European Strong Motion Database is used to get ground motion record sets. Also, a sensitivity analysis is conducted to evaluate the effect of different HS solution parameters on the solution accuracy. Results show that the proposed solution models can be regarded as efficient ways to develop scaled and unscaled ground motion sets compatible with code-based design spectra.

Simulation for the Propulsion of Micro-Hydro-Machine with Unstructured Grid (비정규 격자를 이용한 극소 로봇의 추진 해석)

  • Moon-Chan Kim;Dong-Dai Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • Flow mechanism of contractive and dilative motion is numerically investigated to obtain a propulsive force in highly viscous fluid, which is the simulation of the propulsion in micro-organisms. The computing code for the analysis of complicated motions is developed with cell-centered unstructured grid scheme. The developed code is validated by the well-known problems of cavity flow and oscillating wall. The validated code is applied to the contractive and dilative motion in narrow tube. The computed results are compared with nodal points scheme. By the present results, it is found that propulsive force can be obtained by the contractive and dilative motion through simulation with the developed code.

A Numerical Simulation for Contractive and Dilative Periodic Motion on Axisymmetric Body

  • Kim, Moon-Chan
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Numerical simulation for the axisymmetric body with contractive and dilative periodic motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by the contractive and dilative motion of axisymmetric body. An axisymmetric code is developed with unstructured grid system for the simulation of complicated motion and geometry. It is validated by comparing with the results of Stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n$ = 1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamics performance according to variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Lightweight Loop Invariant Code Motion for Java Just-In-Time Compiler on Itanium (Itanium상의 자바 적시 컴파일러를 위한 가벼운 루프 불변 코드 이동)

  • Yu Jun-Min;Choi Hyung-Kyu;Moon Soo-Mook
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.215-226
    • /
    • 2005
  • Loop invariant code motion (LICM) optimization includes relatively heavy code analyses, thus being not readily applicable to Java Just-In-Time (JIT) compilation where the JIT compilation time is part of the whole running time. 'Classical' LICM optimization first analyzes the code and constructs both the def-use chains and the use-def chains. which are then used for performing code motions. This paper proposes a light-weight LICM algorithm, which requires only the def-use chains of loop invariant code (without use-def chains) by exploiting the fact that the Java virtual machine is based on a stack machine, hence generating code with simpler patterns. We also propose two techniques that allow more code motions than classical LICM techniques. First, unlike previous JIT techniques that uses LICM only in single-path loops for simplicity, we apply LICM to multi-path loops (natural loops) safely for partially redundant code. Secondly, we move loop-invariant, partially-redundant null pointer check code via predication support in Itanium. The proposed techniques were implemented in a JIT compiler for Itanium processor on ORP (Open Runtime Platform) Java virtual machine of Intel. On SPECjvrn98 benchmarks, the proposed technique increases the JIT compilation overhead by the geometric mean of 1.3%, yet it improves the total running time by the geometric mean of 2.2%.

Content-Based Video Retrieval Algorithms using Spatio-Temporal Information about Moving Objects (객체의 시공간적 움직임 정보를 이용한 내용 기반 비디오 검색 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.631-644
    • /
    • 2002
  • In this paper efficient algorithms for content-based video retrieval using motion information are proposed, including temporal scale-invariant retrieval and temporal scale-absolute retrieval. In temporal scale-invariant video retrieval, the distance transformation is performed on each trail image in database. Then, from a given que교 trail the pixel values along the query trail are added in each distance image to compute the average distance between the trails of query image and database image, since the intensity of each pixel in distance image represents the distance from that pixel to the nearest edge pixel. For temporal scale-absolute retrieval, a new coding scheme referred to as Motion Retrieval Code is proposed. This code is designed to represent object motions in the human visual sense so that the retrieval performance can be improved. The proposed coding scheme can also achieve a fast matching, since the similarity between two motion vectors can be computed by simple bit operations. The efficiencies of the proposed methods are shown by experimental results.

An Algorithms of reconstruct unnecessary Code Motion (불필요한 코드 모션 재구성 알고리즘)

  • Sim, Son-Kweon
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.5
    • /
    • pp.711-720
    • /
    • 2004
  • There are conversion of expression motion and assignment motion inclusive espression motion in techniques that optimized program computationally and livelly. In this paper, I suggest that an algorithms of reconstruct unnecessary code motion which is improves Knoop's algorithms that have ambiguous. It is occurred by mixing the node level analysis and the instruction level analysis. This algorithm improves runtime and efficiency of a program by avoiding the unnecessary recalculations and reexecutions of expressions and assignment statements.

  • PDF

Generation of Design Spectrum Compatible Ground Motion in Time Domain (시간영역에서 생성되는 설계응답스펙트럼 맞춤형 지진파 생성)

  • Jeong, Chang-Gyun;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1250-1257
    • /
    • 2009
  • Due to the improvement of the seismic hazard analysis method and the design code, dynamic analysis method is widely used. To conduct dynamic analysis, various coefficients should be designated. The time history acceleration is one of the most essential factor. However, strong earthquake motion data from the outside of the country have been used to conduct dynamic analysis without considering of the ground motion parameters. In this study, the methodology to choose appropriate input motion is developed by using time domain design spectrum matching procedure. Two examples are applied to verify the methodology. The Result shows that the methodology satisfies seismic circumstances and the design code.

  • PDF

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.