• Title/Summary/Keyword: Coconut

Search Result 344, Processing Time 0.025 seconds

Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process (생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study, The effects of three different activated carbon materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of pharmaceutical 4 species (oxytetracycline, tetracycline, trimethoprime and caffeine) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the pharmaceutical 4 species removal in BAC columns. In the coal-based BAC columns, removal efficiencies of oxytetracycline and tetracycline were 87~100% and removal efficiencies of trimethoprime and caffeine were 72~99% for EBCT 5~20 min at $25^{\circ}C$. The kinetic analysis suggested a firstorder reaction model for pharmaceutical 4 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for pharmaceutical 4 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of pharmaceutical 4 species ranging from 0.0360~0.3954 $min^{-1}$ and 1.75 to 19.25 min various water temperatures and EBCTs, could be used to assist water utilities in designing and operating BAC filters.

The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber (활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구)

  • Byeon, Sang-Hoon;Park, Cheon-Jae;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS (Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석)

  • Youn, Ju Min;Doh, Jin Woo;Hwang, In Ha;Kim, Seong Lyong;Kang, Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.717-726
    • /
    • 2017
  • The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.

Analysis of Major Phytosterol Contents for 10 Kind of Vegetable Oils (식물성 유지 10종에 대한 주요 Phytosterol 함량 분석)

  • Cho, Sang-Hun;Lee, Myung-Jin;Kim, Ki-Yu;Park, Geon-Yeong;Kang, Suk-Ho;Um, Kyoung-Suk;Kang, Hyo-Jeong;Park, Yong-Bae;Yoon, Mi-Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.217-223
    • /
    • 2021
  • Vegetable oils are a rich source of bioactive substances. Phytosterols in those have been known for many years for their properties for reducing blood cholesterol levels, as well as their other beneficial health effects. Phytosterols are triterpenes that are important structural components of plant cell membranes just as cholesterol does in animal cell membranes. The aim of this study was to provide consumers with information about phytosterol contents in vegetable oils in Korea market. The contents of major phytosterols (campesterol, stigmasterol, β-sitosterol) in 50 vegetable oils of 10 kinds (perilla oil, peanut oil, avocado oil, olive oil, pine nut oil, sesame oil, canola oil, coconut oil, grape seed oil, and sunflower oil) were analyzed by gas chromatography with flame ionization detector. The average contents of vegetable oils containing 5 or more samples were in the order of sesame oil (334.43 mg/100 g), perilla oil (262.16 mg/100 g), grape seed oil (183.71 mg/100 g), and olive oil (68.68 mg/100 g). Phytosterol content of sesame oil and perilla oil was high among vegetable oils.

Development of Plant-Based Milk Analogues as Alternatives to Cow Milk: Current Status and Future Prospects (우유 대체 식물성 기반 우유 유사체 개발에 관한 현황과 미래)

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Youn, Hye-Young;Kim, Hyeon-Jin;Kim, Young-Seon;Kim, Binn;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.129-144
    • /
    • 2021
  • Following the COVID-19 pandemic, many people are increasingly becoming interested in health and environmental issues. Therefore, the sale of vegan or vegetarian products has been increasing over the last few years, as well as interest in non-dairy plant-based milk that can replace cow's milk. Furthermore, the global food industry has developed an interest in such products, considering the recent changes in consumer trends. In Korea, various products are being launched annually due to the increasing interest in non-dairy plant-based milk. However, research with regard to the quality and type of products produced in Korea is still at the preliminary stage when compared to those in the United States and Europe. Therefore, the present review has summarized non-dairy plant-based milk analogues based on the following key aspects. First, the types of non-dairy plant-based milk analogues and their production technologies (in the order of almond milk > cocoa milk > coconut milk > hemp milk > kidney bean milk > oat milk > peanut milk > rice milk, and soy milk). Second, the current status and future prospects for non-dairy plant-based milk analogues. Third, recent trends and future challenges associated with the production and quality improvement of non-dairy plant-based milk analogues. Fourth, the current status and outlook of the non-dairy plant-based milk analogue market in Korea. In conclusion, the present review could provide the food industry with valuable information regarding non-dairy plant-based milk analogues to facilitate the development of related products. Data were obtained from previously published studies.

Effect of Impregnation and Modification on Activated Carbon for Acetaldehyde Adsorption (아세트알데하이드 흡착을 위한 활성탄의 첨착 및 개질 효과)

  • Jin Chan Park;Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2023
  • In this study, the acetaldehyde removal characteristics of activated carbon (AC) for air purifier filters were investigated using metal catalysts-impregnation and functional group-modification method. The AC with a high specific surface area(1700 m2/g) and micropores was prepared by KOH activation of coconut charcoal and the efficiency of catalyst and functional group immobilization was examined by varying the drying conditions within the pores after immersion. The physical properties of the prepared activated carbon were analyzed by BET, ICP, EA, and FT-IR, and the acetaldehyde adsorption performances were investigated using gas chromatography (GC) at various impregnation and modified conditions. As the concentration of impregnation solution increased, the amount of impregnated metal catalysts increased, while the specific surface area showed a decreasing trend. The adsorption tests of the metal catalyst-impregnated and functional group-modified activated carbons revealed that excellent adsorption performance in compositions MgO10@AC, CaO10@AC, EU10@AC, and H-U3N1@AC, respectively. The MgO10@AC, which showed the highest adsorption performance, had a breakthrough time of 533.8 minutes and adsorption capacity of 57.4 mg/g for acetaldehyde adsorption. It was found that the nano-sized MgO catalyst on the activated carbon improved the adsorption performance by interacting with carbonyl groups of acetaldehyde.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Potential of Contaminant Removal Using a Full-Scale Municipal Water Treatment System with Adsorption as Post-Treatment (실 규모 물 처리 공정 및 후속 흡착 처리에 의한 오염원 제거 잠재성 평가)

  • Haeil Byeon;Geonhee Yeo;Anh-Hong Nguyen;Youngwoong Kim;Donggun Kim;Taehun Lee;Seolhwa Jeong;Younghoa Choi;Seungdae Oh
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.167-177
    • /
    • 2024
  • This study aimed to assess the efficacy of an adsorption process in removing organic matter and micropollutant residuals. After a full-scale water circulation system, the adsorption process was considered a post-treatment step. The system, treating anthropogenically impacted surface waters, comprises a hydro-cyclone, coagulation, flocculation, and dissolved air flotation unit. While the system generally maintained stable and satisfactory effluent quality standards over months, it did not meet the highest standard for organic matter (as determined by chemical oxygen demands). Adsorption experiments utilized two granular activated carbon types, GAC 830 and GCN 830, derived from coal and coconut-shell feedstocks, respectively. The assessment encompassed organic materials along with two notable micropollutants: acetaminophen (APAP) and acid orange 7 (AO7). Adsorption kinetics and isotherm experiments were conducted to determine adsorption rates and maximum adsorption amounts. The quantitative findings derived from pseudo-second-order kinetics and Langmuir isotherm models suggest the effectiveness of the adsorption process. The findings of this study propose the potential of employing the adsorption process as a post-treatment to enhance the treatment of contaminants that are not satisfactorily treated by conventional water circulation systems. This enhancement is crucial for ensuring the sustainability of urban water cycles.

Comparative effect of dietary borage oil and safflower oil on anti-proliferation and ceramide metabolism in the epidermis of essential fatty acid deficient guinea pigs (필수지방산 결핍이 유도된 기니피그에서 보라지유와 홍화유 섭취의 표피 과증식 억제 및 세라마이드 대사에 미치는 효과 비교)

  • Lee, Se Ryung;Cho, Yunhi
    • Journal of Nutrition and Health
    • /
    • v.48 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Purpose: Borage oil (BO) and safflower oil (SO) are efficacious in reversing epidermal hyperproliferation, which is caused by the disruption of epidermal barrier. In this study, we compared the antiproliferative effect of dietary BO and SO. Altered metabolism of ceramide (Cer), the major lipid of epidermal barrier, was further determined by measurement of epidermal levels of individual Cer, glucosylceramide (GlcCer), and sphingomyelin (SM) species, and protein expression of Cer metabolizing enzymes. Methods: Epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut diet (HCO) for 8 weeks. Subsequently, animals were fed diets of either BO (group HCO + BO) or SO (group HCO + SO) for 2 weeks. As controls, animals were fed BO (group BO) or HCO (group HCO) diets for 10 weeks. Results: Epidermal hyperproliferation was reversed in groups HCO + BO (67.6% of group HCO) and HCO + SO (84.5% of group HCO). Epidermal levels of Cer1/2, GlcCer-A/B, and ${\beta}$-glucocerebrosidase (GCase), an enzyme of GlcCer hydrolysis for Cer generation, were higher in group HCO + BO than in group HCO, and increased to levels similar to those of group BO. In addition, epidermal levels of SM1, serine palmitoyltransferase (SPT), and acidic sphingomyelinase (aSMase), enzymes of de novo Cer synthesis and SM hydrolysis for Cer generation, but not of Cer3-7, were higher in group HCO + BO than in group HCO. Despite an increase of SPT and aSMase in group HCO + SO to levels higher than in group HCO, epidermal levels of Cer1-7, GlcCer-A/B, and GCase were similar in these two groups. Notably, acidic ceramidase, an enzyme of Cer degradation, was highly expressed in group HCO + SO. Epidermal levels of GlcCer-C/D and SM-2/3 did not differ among groups. Conclusion: Dietary BO was more prominent for reversing epidermal hyperproliferation by enhancing Cer metabolism with increased levels of Cer1/2, GlcCer-A/B, and SM1 species, and of GCase proteins.

Inhibitory Effects of Functional Sujeonggwa (Cinnamon Drink) on Lipid Peroxidation and DNA Damage in Diet-Induced Hypercholesterolemic ApoE Knockout Mice (고콜레스테롤혈증 ApoE Knockout 마우스에서 기능성 수정과의 지질과산화 및 산화적 DNA 손상 억제 효과)

  • Park, Eunju;Baek, Aran;Kim, Mijeong;Lee, Seon Woo;Lee, Eunji;Choi, Mi-Joo;Lee, Jeehyun;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1627-1634
    • /
    • 2014
  • The recipe for sujeonggwa, a Korean traditional sweet drink containing cinnamon, ginger, sugar, or honey, was modified by replacing sugar with alternative sweeteners [stevia or short-chain frutooligosaccharide (scFOS)] in order to improve the health functionality of sujeonggwa. The aim of this study was to evaluate the effects of modified sujeonggwa on lipid peroxidation and oxidized DNA damage in diet-induced hypercholesterolemic ApoE knockout mice. Hypercholesterolemia was induced in 6-week-old male mice by administration of a high cholesterol diet (1.25% cholesterol, 0.5% cholic acid, and 10% coconut oil) for 4 weeks, after which mice were divided into five groups: sucrose solution-fed control group, sujeonggwa containing sucrose group, sucrose+stevia group, sucrose+stevia+scFOS group, and commercially available sujeonggwa group as a positive control. After 6 weeks, sujeonggwa supplementation resulted in reduced hepatic thiobarbituric acid reactive substances (TBARS), regardless of sweetener type. However, reduction of hepatic TBARS by commercially available sujeonggwa was insignificant. Both endogenous and $H_2O_2$-induced DNA damage in hepatocytes and splenocytes were significantly reduced only in the sujeonggwa containing stevia group compared to the sucrose-fed control group. There were no significant effects of sujeonggwa supplementation on total radical trapping potential, lipid peroxidation, or DNA damage in blood. These results suggest that sujeonggwa has protective effects against hepatic lipid peroxidation and DNA damage in hepatocytes or splenocytes from diet-induced hypercholesterolemic ApoE knockout mice, and the type of sweetener should be modified to improve the health benefits of sujeonggwa.