• Title/Summary/Keyword: Cockpit Noise

Search Result 13, Processing Time 0.029 seconds

An Experimental Approach for Characteristic Rattle Noise Considering the Deterioration Condition of Cockpit Module Materials in the Vehicle (자동차 칵핏 모듈용 시편 소재의 열화 조건을 고려한 이음(Rattle) 발생 특성에 관한 시험적 고찰)

  • Yang, Jeongmin;Yi, Chulhyun;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.796-799
    • /
    • 2014
  • It is treated more seriously than ever as the customer requirements are becoming a high-quality and diversification. Among the various elements to affect customer's evaluation of automobile quality, BSR(buzz, squeak, rattle noise) are considered to be a mostly contributing factor. Rattle Noises in cockpit modules are one of the major concerns mentioned above. Recently, measurements of the BSR noise between the parts that make up the products from the perspective that the structural causes. For structures that make up material has not been any consideration of the BSR noise characteristics. The aim of this study is to clarify the characteristics of noise occurrence in vehicle cockpit module that consist of plastic material after measuring noise by rattle special testing instrument.

  • PDF

Experimental Study of being vehicle cockpit module BSR Noise considering the deterioration condition of the module unit (모듈 단위 열화조건을 고려한 자동차용 칵핏 모듈 이음(BSR Noise)에 대한 시험적 고찰)

  • Yi, Chulhyun;Yang, Jeongmin;Cho, Jinho;Lee, Wonku;Woo, Changsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.791-795
    • /
    • 2014
  • In this paper, in order to impart the aging condition of the parts, by configuring the cycle of temperature from low temperature was performed by applying the aging conditions for vehicle cockpit module. The reason for the selected modules of the cockpit vehicle parts, because the joint occurrence typical components of the room component is a first module and ceiling cockpit module. After setting the excitation profile using the BSR exciter only that this is for the module degradation after the initial and grasp the change in the dynamic characteristics of the modules based on the before and after deterioration may be made in the module, grasp the noise generating position I measured the noise and proximity. Was also visualized on the position of the joint is generated using a sound camera to objective results occurring where the joint is selected through subjective evaluation.

  • PDF

Application of Virtual SEA for the Prediction of Acoustic Performance of Cockpit (칵핏 흡차음 성능 예측을 위한 Virtual SEA 의 활용)

  • Jeong, Won-Tae;Ko, Chang-Sung;Park, Hyung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.903-912
    • /
    • 2007
  • One of the crucial factors which determine the quality and the accuracy of SEA model is how subsystems are defined. Experimental SEA technique had been a unique way to divide entire systems accurately for mid-frequency range, until FEA based virtual FRF response technique, virtual SEA method presented. Virtaul SEA has been developed for predictive SEA tool in early design process. In this study, Modal analysis results from modified crash FE model is used for Statistical transfer matrix. Observation nodes on the cockpit are grouped by attractive substructuring method based on point to point transfer and correlation matrix. Complex cockpit structure is divided into subsystems by automatic substructuring. Comparison with experimental SEA results validates the application of Virtual SEA to cockpit.

  • PDF

The Evaluation of Human Vibration Effect on T-50/A-50 Pilot (T-50/A-50 조종사의 인체 진동 영향성 평가)

  • Moon, Seong-Wook;Cho, Dae-Hyeon;Kim, Young-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.546-549
    • /
    • 2004
  • The T-50/A-50 Golden Eagle was developed for a supersonic trainer and light combat aircraft. At the design stage, vibration control plans were established and applied. For cockpit vibration, crew comfort vibration level was defined by the requirement of MIL-A-8892. It is found that the T-50/A-50 meets the requirement of cockpit vibration from the flight test data analysis. This paper contains the results of cockpit vibration analysis using the flight test data and the results of human vibration analysis lot the pilot inside aircraft. The human vibration level of pilot is increased as dynamic pressure is increased and at the specific high dynamic pressure, the ride comfort indicates 'a little uncomfortable'. Overall analysis results show that the vibration level of T-50/A-50 cockpit is tolerable and not critical for pilot's comfort.

  • PDF

The Study on Air Force Pilot's Recognition about Cockpit Noise to Foster Aviation Safety by the Use of Active Noise Cancellation (ANC)

  • Kyungtaek Hwang;Gene Lee;Kyungeun Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.26-36
    • /
    • 2023
  • 공군 조종사들이 비행 중에 겪는 지속적이고 강도 높은 소음은 조종사의 생리적(physiological) 및 심리적(psychological) 상태에 부정적인 영향을 미칠 수 있다. 이는 조종사의 비행 능력(performance)에 부정적인 영향을 주게 되며 임무 완수 및 비행 안전을 저해시키는 치명적인 결과로 이어질 수 있다. 대한민국 공군은 조종사들의 청력 보호를 위해 수동 소음 감쇠(Passive Noise Cancellation, PNC) 및 능동 소음 감쇠(Active Noise Cancellation, ANC) 기술이 적용된 헤드셋 및 헬멧을 사용 중이다. 그러나, 소음 저감 기술이 조종사의 청력 보호, 비행 능력, 및 비행 안전에 미치는 효용성에 대한 공군 조종사의 인식은 아직 연구된 바가 없다. 따라서 본 연구는 소음과 관련된 이론적 배경을 고찰하였고, 이후 설문조사를 통해 공군 조종사들(n=154)의 조종석 내 소음 및 소음 감쇠 기술에 대한 인식을 분석하였다. 분석 결과, 능동 소음 감쇠(ANC) 기술이 적용된 헤드셋 및 헬멧의 사용은 소음이 조종사의 생리적 상태에 미치는 영향에는 유의미한 효과가 없지만(p=0.402), 심리적 상태에 미치는 영향은 유의미하게 감소시키는 것으로 나타났다(p<0.001). 따라서, 능동 소음 감쇠(ANC) 기술이 적용된 비행 헤드셋 및 헬멧 사용의 필요성을 강조하였고, 이를 통해 조종사의 비행 능력(performance) 저하 방지 및 비행 안전 증진에 기여하고자 한다.

Speech Enhancement Using Level Adapted Wavelet Packet with Adaptive Noise Estimation

  • Chang, Sung-Wook;Kwon, Young-Hun;Jung, Sung-Il;Yang, Sung-Il;Lee, Kun-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.87-92
    • /
    • 2003
  • In this paper, a new speech enhancement method using level adapted wavelet packet is presented. First, we propose a level adapted wavelet packet to alleviate a drawback of the conventional node adapted one in noisy environment. Next, we suggest an adaptive noise estimation method at each node on level adapted wavelet packet tree. Then, for more accurate noise component subtraction, we propose a new estimation method of spectral subtraction weight. Finally, we present a modified spectral subtraction method. The proposed method is evaluated on various noise conditions: speech babble noise, F-l6 cockpit noise, factory noise, pink noise, and Volvo car interior noise. For an objective evaluation, the SNR test was performed. Also, spectrogram test and a very simple listening test as a subjective evaluation were performed.

The Research on the hearing damage and methods of hearing protection against aircraft noise (항공기 소음으로 인한 청력손실과 보호방안에 관한 연구)

  • Song, Byung-Heum;Choi, YiI-Kyoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.3 no.1
    • /
    • pp.21-35
    • /
    • 1995
  • Nowadays aviation noise significantly affects a number of people over the world. This paper is mainly focused on the effect of temporary and permanent hearing loss of cockpit crew, flight attendants, passengers, persons in communities exposed to aircraft overflight. Also this paper describes the human hearing mechanism and the processes of temporary and permanent hearing loss. The results of research are presented and the potential for hearing loss in aviation noise environments evaluated. The Occupational Safety and Health Administration (OSHA) hearing protection criteria are also addressed.

  • PDF

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Dynamic Characteristics of Plastic Materials for Automobile Cockpit Module (자동차 칵핏 모듈용 플라스틱 소재의 열화 동특성 평가)

  • Woo, Chang Su;Park, Hyun Sung;Jo, Jin Ho;Kim, Ji Hoon;Choi, Ju Ho;Kim, Yeoung Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1585-1590
    • /
    • 2012
  • Engineering plastics are used in instrument panels, interior trim, and other vehicle applications, and the thermomechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the temperature effects. Viscoelastic properties such as the glass transition temperature and storage modulus and loss factor under temperature and frequency sweeps were measured. The data were compared with the original ones before aging to analyze the behavior changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

The study of dynamic safety using M&S for Integrated Electro-Mechanical Actuator installed on aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.36-41
    • /
    • 2014
  • Electro-Mechanical Actuator installed on aircraft consists of a decelerator which magnifies the torque to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. EMA controls aircraft attitued, position, landing, takeoff, etc. It is important part of a aircraft. Aircraft maneuvering make vibration of EMA. Vibration may cause the vibration fatigue. For that reason, it is necessary to analyze the system safety. In this paper, first EMA is modeled in finite element method and analyzed the response from input vibration. second EMA is tested and analyzed from modal experimental data. third EMA Fe model is updated and re analyzed. and EMA is verified safety with $3{\sigma}$ stress and S/N curves.

  • PDF