• Title/Summary/Keyword: Cochlea

Search Result 74, Processing Time 0.025 seconds

Two-Dimensional Modelling of the Cochlear Basilar Membrane (달팽이관 기저막의 이차원적 모델링)

  • 장순석
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.439-446
    • /
    • 1994
  • Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluld mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further development of active elements which are essenclal in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult.

  • PDF

생체 신호처리

  • 박상희
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.97-101
    • /
    • 1989
  • N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms.

  • PDF

A Study on Detection of Latency of EOAE Signal using QMF (QMF를 이용한 유발 이음형 방사신호의 잠시 검출에 관한 연구)

  • Chung, Woo-Hyun;Beack, Seung-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3221-3223
    • /
    • 1999
  • OAEs are low-level sounds produced by cochlea as part of the normal hearing process. OAEs can be measured with a microphone placed in the outer ear-cannel. We can diagnose cochlea's condition by using OAEs. To diagonose it's condition, however, is difficult by reason of OAEs' tiny. Thus, It need to a method using latency which essential diagnosing a time-element of OAEs. This study proposes a latency detection algorithm using 7-QMF for more effective detection of latency, 7-QMF designed by wavelet theory can process signal without a losses of information. The latency-detector based on 7-QMF is superior to former method.

  • PDF

An Experimental Study of the Cochlea-inspired Artificial Filter Bank(CAFB) for Compressed Sensing (압축센싱을 위한 달팽이관 원리기반 인공필터뱅크의 실험적 검증)

  • Heo, Gwanghee;Jeon, Joonryong;Jeon, Seunggon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.787-797
    • /
    • 2015
  • In this paper, a cochlea-inspired artificial filter bank(CAFB) was developed in order to efficiently acquire dynamic response of structure, and it was also evaluated via dynamic response experiments. To sort out signals containing significant modal information from all the dynamic responses of structure, it was made to adopt a band-pass filter optimizing algorithm(BOA) and a peak-picking algorithm (PPA). Optimally designed on the basis of El-centro and Kobe earthquake signals, it was then embedded into the wireless multi-measurement system(WiMMS). In order to evaluate the performance of the developed CAFB, a vibration test was conducted using the El-centro and Kobe earthquake signals, and structural responses of a two-span bridge were obtained and analyzed simultaneously by both a wired measurement system and a CAFB-based WiMMS. The test results showed that the compressed dynamic responses acquired by the CAFB-based WiMMS matched with those of the wired system, and they included significant modal information of the two-span bridge. Therefore this study showed that the developed CAFB could be used as a new, economic, and efficient measurement device for wireless sensor networks(WSNs) based real time structural health monitoring because it could reconstruct the whole dynamic response using the compressed dynamic response with significant modal information.

Auditory Sensation by the Inserted "Electronic Cochlea" in the Cases of the Experim entally Destroyed Receptor Organ of Corti of the Cat (와우 수용기 모세포를 파괴한 가묘의 "전기와우" 삽입에 의한 "청각감")

  • 장인원;김성남;양한모;정규화;최윤호;정종진;조용범;국태진;이정헌
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1979.05a
    • /
    • pp.4.3-4
    • /
    • 1979
  • In the cases of the experimentally destroyed receptor organ of the Corti of the cats, "electric cochlea" were inserted near the auditory neuron through the Scala tympani as an input of the inner device, and outer device is placed near the receiver of the audiometer. During exposing noise through the outer device, kymographic record were obtained as following: 1) Correlation between increasing intensity and amplitude showed parallel responses 2) The auricular reflex by repeated stimulation of the sound showed considerable increase at first, and decrease respectively. 3) In this experimental animals, absolutely non-responsed period, relatively non-responsed period and responsed period were observed. 4) Above mentioned reflex indicate that "Auditory sensation" can be induced by inserted "Electric cochlea" in the cases of the experimentally destroyed receptor organ of Corti of the cats.

  • PDF

A Simulation Study of Artificial Cochlea Based on Artificial Basilar Membrane for Improving the Performance of Frequency Separation (인공기저막 기반 인공와우의 주파수 분리 성능향상을 위한 인공기저막 전산모사)

  • Kim, Tae-In;Chang, Seong-Min;Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.457-463
    • /
    • 2012
  • The basilar membrane (BM), one of organs of cochlea, has the specific positions of the maximum amplitude at each of related frequencies. This phenomenon is due to the geometry of BM. In this study, as the part of the research for the development of fully implantable artificial cochlea which is based on polymer membrane, parametric studies are performed to suggest the desirable artificial basilar membrane model which can detect wider range of frequency separation. The vibro-acoustic characteristics of the artificial basilar membrane are predicted through finite element analysis using commercial software Abaqus. Simulation results are verified by comparing with experimental results. Various geometric shapes of the BM and residual stress effects on the BM are investigated through the parametric study to enable a wider detectable frequency separation range.

Wireless Communication Systems for Human Implantable Artificial Cochlea (인체 삽입형 인공와우를 위한 무선 통신 시스템)

  • Han, Sungmin;Shin, Jaesub;Cho, Jaewook;Jang, Jongmoon;Choi, Hongsoo;Choi, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1150-1158
    • /
    • 2013
  • Artificial cochlear implant system is known as the most efficient and widespread device to patients who have cochlear disorder. However, current commercialized artificial cochleas have inconveniences because of large volume size and high power consumption, requiring further research on improvements in terms of the size, power, and performance. In this paper, we will introduce our fully implantable artificial cochlear implant system, where small-size sensors and actuators are wirelessly connected, focusing on communication system design and its performance simulation.

Cochlin-cleaved LCCL is a dual-armed regulator of the innate immune response in the cochlea during inflammation

  • Rhyu, Hyeong-Jun;Bae, Seong Hoon;Jung, Jinsei;Hyun, Young-Min
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.449-452
    • /
    • 2020
  • The inner ear is a complex and delicate structure composed of the cochlea and the vestibular system. To maintain normal auditory function, strict homeostasis of the inner ear is needed. A proper immune response against infection, thus, is crucial. Also, since excessive immune reaction can easily damage the normal architecture within the inner ear, the immune response should be fine regulated. The exact mechanism how the inner ear's immune response, specifically the innate immunity, is regulated was unknown. Recently, we reported a protein selectively localized in the inner ear during bacterial infection, named cochlin, as a possible mediator of such regulation. In this review, the immunological function of cochlin and the mechanism behind its role within inner ear immunity is summarized. Cochlin regulates innate immunity by physically entrapping pathogens within scala tympani and recruiting innate immune cells. Such mechanism enables efficient removal of pathogen while preserving the normal inner ear structure from inflammatory damage.

Electrical Transmission Line Modelling of the Cochlear Basilar Membrane (다팽이관 기저막의 전기 전달선 모델링)

  • Jarng, Soon-Suck
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.125-136
    • /
    • 1993
  • The study of Cochlear biomechanics is to clearly define three biomechanical principles of the Cochlea : Activity, Nonlinearity and Feedback. In this article, the Cochlea is linearly and actively modelled in one dimensional time domain. The sharp tunning of the Basilar Membrane displacement is shown when the amplifying activity of hair cells is added to the model. The amplified energy of the travelling displacement wave is emitted throughout the Cochlear fluid, so that the model becomes unstable. A new technique is introduced to reduce strong echos fro the Helicotrema. It makes the model less unstable. Both pure and click tones are used as input stimuli onto the ear durm. When the model is normal, the click response of the model shows that the backward emission of the amplified fluid pressure has mainly the echos from the Helicotrema. However, when the linear and active model is assumed to be abnormal, that is, some of hair cells are damaged not to produce the active process, the effect of the hair cell damage is resulted in the Oto-acoustic emission. The frequency response of the abnormally emitted sound pressure shows that the Oto-acoustic emission has the information about the characteristic frequency of the damaged hair cell. The main aim of this paper is to demonstrate the active biomechanics of the Chchlea in the time domain.

  • PDF