• Title/Summary/Keyword: Cobaltous Chloride

Search Result 7, Processing Time 0.025 seconds

Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage (UV에 의해 손상된 DNA 회복에 미치는 cobaltous chloride의 효과)

  • Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 1995
  • To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.

  • PDF

A Study on Dynamic Moisture Transfer in Textiles Using Cobaltous Chloride Method (염화코발트법을 이용한 직물의 동적 수분전달에 대한 연구)

  • Hong Kyunghi;Kim Eunsook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.4
    • /
    • pp.400-411
    • /
    • 1989
  • Moisture related properties of fabrics in dynamic modes are considered to be important in the judgement of the subjective comfort characteristics of clothing fabrics. In the current study, an attempt to improve the cobaltous chloride test method was made which has been known as a convenient screening test for dynamic surface wetness. The color changes of cobaltous chloride treated fabrics on the simulated sweating skin were calibrated against standard color strips. The standard color strips were made of all typs of test fabrics and installed inside of the test tubes containing a series of saturated salt solutions, which gives more quantitative informations on dynamic moisture transfer Influences of fiber types and finishes on dynamic moisture transfer in textiles were studied using a single layer of fabric samples. Fiber types included $100\%$ cotton, C/P 50/50, C/P 35/65. Durable press and soil release finished cotton and C/P 50/50 fabrics were also included. There were significant fiber effects on the dynamic moisture transfer. The order of time taken to reach to the specified $\%$ RH was C/P 35/65$100\%$ cotton fabrics. It was possible to detect significant finish effects by increasing the concentrations of cobaltous chloride solutions. The order of time taken to reach to the specified $\%$ R.H was durable press$100\%$ cotton, C/P 50/50, C/P 35/65 and $100\%$ PET were placed at the inner side of the outer layer and tested. It was shown that cobaltous chloride treated $100\%$ cotton fabirc was easier to detect color changes than C/P blend fabic in the double layer experiments. By placing test sample under the cobaltous chloride treated cotton fabrics, it was able to detect the differences among the test samples, some of which were known to be difficult in padding with cobaltous chloride solutions. Besides, the double layer method would provide with the broader application of the cobaltous chloride method in !uture, since it is possible to test the dynamic moisture transfer of clothing as worn.

  • PDF

A Study on the Performance Evaluation of Moisture Transfer in Clothing under Wearing Conditions -Evaluation by Covaltous Chloride Method- (의복 착용시 의복의 수분전달성능 평가에 대한 연구 -염화 코발트 법을 이용한 평가-)

  • 홍경희
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.4
    • /
    • pp.41-50
    • /
    • 1989
  • Cobaltous Chloride method has been known as a sufficiently good test methodolgy for the dynamic moisture transfer through textile fabrics. In the current study, Cobaltous Chloride method was adopted and modified to test dynamic moisture transfer in clothing under actual wearing conditions. It was possible to test the significant difference between fabric types by controlling the position of CoCl2 impregnated swatch (LD type), time scale of the moisture transfer (within 10 mins), experimental design (split plot desing) and other miscellaneous experimental techniques. As results, it was concluded that Cobaltous Chloried method is a satisfactory screening test to predict moisture related comfort properties of clothing as won.

  • PDF

The Effect of Geometrical Structure on the Moisture Transport Properties of Nonwoven Batting Materials (부직포 충전재의 구조적 특성이 수분전달 특성에 미치는 영향-단층구조와 이층구조 부직포의 비교-)

  • 김희숙;나미희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.6
    • /
    • pp.810-818
    • /
    • 2000
  • The purpose of this study was to analyze the effect of geometrical structure on the moisture transport properties of nonwoven batting materials. Two types of nonwovens were used such as single and double layered nonwovens. Steady and dynamic state water vapor transport properties were measured by absorption, evaporation and cobaltous chloride method respectively. The results of this study were as follows: 1) Geometrical structure affected water vapor evaporation, but there were no differences between single and double layered nonwovens in moisture absorption. Thickness and air permeability were influencing factor on water vapor transport rate. 2) Directionality of double layered nonwoven was observed both in steady and dynamic state moisture transport. There were differences between upper and lower layer of double layered nonwoven both in moisture absorption rate and color change by cobaltous chloride method. 3) In dynamic state of water vapor transport rate, single layered nonwoven reached more rapidly at the established relative humidity. It was confirmed that geometrical structure affected water vapor evaporation and hydrophilicity of fiber affected moisture absorption because there were much more water vapor transport rate by evaporation than absorption within the same period of time.

  • PDF

A Study on the Effect of Fiber Type on the Water Vapor Transport Properties (섬유의 종류와 조합에 따른 직물의 수분전달 특성에 관한 연구)

  • Na Me Hee;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.3 s.35
    • /
    • pp.229-240
    • /
    • 1990
  • The purpose of this study was to investigate the effect of hydrophilicity of the fiber on the water vapor transport properties of the fabric by using double layered fabrics of natural and synthetic fibers such as cotton, wool, nylon, dacron, orlon and polypropylene. Wickability and absorption rate were measured to determine the absorbancy of the fabrics. Dynamic and steady state water vapor transport properties were measured by cobaltous chloride method and evaporation method, respectively. Absorption was in the order of orlon> cotton > wool > nylon > polypropylene > dacron. Dynamic surface wetness of synthetic fabrics were faster than that of natural fabrics. For the double layered fabrics, higher water vapor transport was resulted when the natural fabric was exposed to lower vapor pressure and synthetic fabric was exposed to higher vapor pressure than when the fabrics were layered the other way around. Opposite result was obtained for orlon, which suggested that when the fabric of high absorbancy is exposed to the environment and lower absorbancy is to the skin, higher water vapor transpont could be resulted.

  • PDF

Production of Fine Cobalt Metal Powders from Stellite Scrap (Stellite 스크랩으로 부터 Co 미분말의 제조)

  • 박문경;신동성
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1994
  • Fine cobalt metal powders was produced from domestic Stellite scrap by decomposing it with molten sodium hydroxide. Complete decomposition of the scrap could be obtained with the weigth ratio of sodium hydroxide to Stellite being about 2 at the temperature ranges of $750~800^{\circ}C$ for an hour. The cobalt-bearing compound was identified as $Co_2O_3{\dot}H_2O$ by X-ray analysis and D.T.-T.G.a.. The compound was then digested in HCI to form cobalt chloride, and after iron removal by adjusting the pH of the solution, cobaltous or cobaltic hydroxide was precipitated at the pH of about 13 or 4, respectively. The precipitates were reduced by hydrogen in the temperatures of $400~500^{\circ}C$ to fine cobalt powders of high purity with the size of 1.0 to $1.5\mu\textrm{m}$. The recovery of cobalt from Stellite scrap was about 75~86% by weight.

  • PDF

Diagnostic Value of the Cobalt($^{58}Co$) Excretion Test in Iron Deficiency Anemia (철결핍성빈혈(鐵缺乏性貧血)에서 Cobalt($^{58}Co$)배설율검사(排泄率檢査)의 진단적(診斷的) 가치(價値))

  • Sihn, Hyun-Chung;Hong, Kee-Suck;Cho, Kyung-Sam;Song, In-Kyung;Koh, Chang-Soon;Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-34
    • /
    • 1976
  • The diagnosis of iron deficiency rests upon the correct evaluation of body iron stores. Morphological interpretation of blood film and the red cell indices are not reliable and often absent in mild iron deficiency. Serum iron levels and iron-binding capacity are more sensitive indices of iron deficiency, but they are often normal in iron depletion and mild iron deficiency anemia. They are also subject to many variables which may introduce substantial errors and influenced by many pathologic and physiologic states. Examination of the bone marrow aspirate for stainable iron has been regarded as one of the most sensitive and reliable diagnostic method for detecting iron deficiency, but this also has limitations. Thus, there is still need for a more practical, but sensitive and reliable substitute as a screening test of iron deficiency. Pollack et al. (1965) observed that the intestinal absorption of cobalt was raised in iron-deficient rats and Valberg et al. (1969) found that cobalt absorption was elevated in patients with iron deficiency. A direct correlation was demonstrated between the amounts of radioiron and radiocobalt absorbed. Unlike iron, excess cobalt was excreted by the kidney, the percentage of radioactivity in the urine being directly related to the percentage absorbed from the gastrointestinal tract. Recently a test based on the urinary excretion of an oral dose of $^{57}Co$ has been proposed as a method for detecting iron deficiency. To assess the diagnostic value of urinary cobalt excretion test cobaltous chloride labelled with $1{\mu}Ci\;of\;^{58}Co$ was given by mouth and the percentage of the test dose excreted in the urine was measured by a gamma counter. The mean 24 hour urinary cobalt excretion in control subjects with normal iron stores was 6.1% ($1.9{\sim}15.2%$). Cobalt excretion was markedly increased in patients with iron deficiency and excreted more than 29% of the dose. In contrast, patients with anemia due to causes other than iron deficiency excreted less than 27%. Hence, 24 hour urinary cobalt excretion of 27% or less in a patient with anemia suggets that the primary cause of the anemia is not iron deficiency. A value greater than 27% in an anemic subject suggests that the anemia is caused by iron deficiency. The cobalt excretion test is a simple, sensitive and accurate method for the assessment of body iron stores. It may be particularly valuable in the epidemiological studies of iron deficiency and repeated evaluations of the body iron stores.

  • PDF