• Title/Summary/Keyword: Cobalt-complex

Search Result 142, Processing Time 0.022 seconds

Rates and Mechanism of Reaction of Dichlorobis(ethylenediamine)Cobalt(Ⅲ) Chloride with Diethanolamine Dithiocarbamate (디에탄올아민 디티오카바메이트와 트란스-디클로로비스(에틸렌디아민)코발트(Ⅲ)이온의 반응에 대한 속도와 메카니즘)

  • Kim, Chan Woo;Kim, Chang Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.302-307
    • /
    • 1996
  • Diethanolamine dithiocarbamate is known to react with dichlorobis(ethylenediamine)cohalt(Ⅲ) chloride to form [Co(dtc)3](dtc=diethanolamine dithiocarbamate) in which two sulfur atoms of the dithiocarbamate are bound to cobalt. The complex is moderately soluble in acetone, but sparingly soluble in carbon disulfide. Kinetics and mechanisms of the reaction of dichlorobis(ethylenediamine)cobalt(Ⅲ) chloride with diethanolamine dithiocarbamate have been studied in aqueous solution. Activation parameters have been calculated from the kinetic data for the reaction and from these results a possible mechanism for the reaction has been proposed.

  • PDF

Cobalt(III) Complexes of Various Salen-Type Ligand Bearing Four Quaternary Ammonium Salts and Their Reactivity for CO2/Epoxide Copolymerization

  • Kim, Bo-Eun;Varghese, Jobi Kodiyan;Han, Yong-Gyu;Lee, Bun-Yeoul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.829-834
    • /
    • 2010
  • Ligand variation was carried out on a cobalt(III) complex of Salen-type ligand comprised of 1,2-cyclohexenediamine and salicylaldehyde bearing a methyl substituent on 3-position and -[$CMe(CH_2CH_2CH_2N^+Bu_3)_2$] on 5-position, which is a highly active catalyst for $CO_2$/propylene oxide copolymerization. Replacement of the methyl substituent with bulky isopropyl group resulted in alteration of the binding mode, consequently lowering turnover frequency significantly. Replacement with an ethyl group preserved binding mode and activity. Replacement of the tributylammonium unit with trihexylammonium or trioctylammonium, or replacement of 1,2-cyclohexenediamino unit with -$NC(Me)_2CH_2N$- decreased activity, even though the binding mode was unaltered.

Trifunctional Amino Acid Cobalt(Ⅲ) Complexes of N,N'-Diethylethylenediamine-N,N'-di-α-butyrato Ligand

  • 이인경;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.433-436
    • /
    • 1996
  • Cobalt(Ⅲ) complexes of trifunctional amino acid and N,N'-diethylethylenediamine-N,N'-di-α-butyrate(deedba), s-cis-[Co(deedba)(L-aa)] (L-aa=S-methyl-L-cysteine, L-aspartic acid, L-glutamic acid) have been prepared from the reaction between the s-cis-[Co(deedba)(Cl2)]- complex and the corresponding amino acid. The amino acids have been found to coordinate through the amine and carboxylate groups. The S-methyl-L-cystene is coordinated not by the sulfur donor atom, but by the nitrogen and oxgen donor atoms, and the L-aspartic and L-glutamic acids are coordinated to the cobalt(Ⅲ) ion via formation of the five-membered glycinate chelate ring. Relatively small optical activity shown by the complexes is due to the chiral center present in the amino acids.

Alanine and S-Methylcysteine Cobalt (III) Complexes of Ethylenediamine-N,N'-di-${\alpha}$-butyric Acid

  • Moo-Jin Jin;Jio Woo Cheon;Sung Rack Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.251-253
    • /
    • 1990
  • L-Alanine(L-ala) and S-methyl-L-cysteine(L-mcy) cobalt(III) complexes of a flexible $N_2O_2$-type tetradentate ligand ethylenediamine-N,N'-di- -butyric acid(eddb), s-cis-[Co(eddb)(L-ala)] and s-cis-[Co(eddb)(L-mcy), have been prepared via the substitution reactions of the s-cis-$[Co(eddb)Cl_2]$-complex with, respectively, L-alanine and S-methyl-L-cysteine. Both L-alanine and S-methyl-L-cysteine are found to coordinate to the cobalt(III) ion via the nitrogen and oxygen donor atoms to give the meridional s-cis isomer. Electronic absorption, ir and pmr spectra are used to characterize the complexes obtained in this work along with elemental analysis data.

Temperature-Dependent Mn Substitution Effect on LiNiO2

  • Seungjae Jeon;Sk. Khaja Hussain;Jin Ho Bang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.161-167
    • /
    • 2024
  • Despite the important role of manganese (Mn) in cobalt-free, Ni-rich cathode materials, existing reports on the effects of Mn as a substitute for cobalt are not consistent. In this work, we analyzed the performance of cathodes comprised of Li(Ni1-xMnx)O2 (LNMO). Both beneficial and detrimental results occurred as a result of the Mn substitution. We found that a complex interplay of effects (Li/Ni mixing driven by magnetic frustration, grain growth suppression, and retarded lithium insertion/extraction kinetics) influenced the performance and was intimately related to calcination temperature. This indicates the importance of establishing an optimal reaction temperature for the development of high-performance LNMO.

Electrochemical Reduction for trans-Complexes of Cobalt (III) with Bis(ethylenediamine) and Monodendate Ligands (한자리 리간드를 포함하는 트란스비스 (에틸렌디아민) 코발트 (III) 이온의 전극 환원반응)

  • Jung-Ui Hwang;Jong-Jae Chung;Jae-Duck Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.215-224
    • /
    • 1989
  • Electrochemical reductions of $trans-[Co(en)_2X_2](ClO_4)_n$ (where X is cyanide, nitrite, ammonia, and isothiocyanate) were investigated by cyclic voltammetry and polarography at mercury and glassy carbon electrode. $trans-[Co(en)_2(CN)_2]ClO_4$ was reduced to Co(II) complex followed by adsorption to the mercury electrode. Cyanide ion was not released from the reduced Co(II) complex but the cyanide and (en) were released after the reduction to metallic cobalt. The other complexes except $trans-[Co(en)_2(CN)_2]ClO_4$ were reduced to cobalt(II) complexes followed by release of monodendate ligand, and (en) was released at the reduction step to metallic cobalt. $trans-[Co(en)_2(NO_2)_2]ClO_4$ was reduced to cobalt(Ⅱ) complex, and $NO_2^-$ ion was released followed by electroreduction through ECE mechanism at pH 2. On glassy carbon electrode, all complexes of Co(III) were reduced to Co(II) complexes with irreversible one-electron diffusion controlled reaction in which (en) was not released at this step. Increasing absorption wave number of complexes caused to negative shift of peak potential.

  • PDF

Cobalt(II) Complex of 1,2-Bis(2,2'-bipyridyl-6-yl)ethane. Crystallization Process and Structural Analysis of Two Shapes of Crystals (1,2-비스(2,2'-디피리딜-6일)에탄의 코발트 착물. 두 가지 형태의 결정화 과정 및 구조 분석적 접근)

  • Park, Sung-Ho;Yoo, Kyung-Ho;Jung, Ok-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.421-427
    • /
    • 1999
  • Two shapes of crystals have been isolated by the interdiffusion of $Co(NCS)_2$ dissolved in methanol with 1,2-bis(2,2'-bipyridyl-6-yl)ethane (bbpe) dissolved in chloroform. The two crystals have been elucidated as $trans-Co^{II}(NCS)_2(bbpe)$ and $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$, by X-ray crystallography, elemental analysis, IR, and thermal analysis. The two molecular structures are very similar except for the absence or presence of chloroform solvate molecules. The bbpe ligand coordinates to the cobalt(II) ion in an open-ended tetradentate mode, resulting in discrete mononuclear cobalt(II) complex. The cobalt atom adopts a typical octahedral arrangement with six nitrogen donating atoms with two NCS groups in trans positions. A significant solid-to-solid phase transition occurs presumably due to the change of conformationally flexible bbpe ligand. The formation of both crystals oeeurs in a successive two-step process, the formation of $trans-Co^{II}(NCS)_2(bbpe)$ and its transformation into $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$. The thermal stability and favorable formation of the solvate crystals may be ascribed to the interaction between S atom of NCS group and Cl of chloroform.

  • PDF

Electrochemical Properties and Synthesis of Poly(ether)tailed Cobalt(II)bipyridine Complex (폴리(에테르)사슬이 결합된 Cobalt(II)bipyridine 착물의 합성과 전기화학적 성질)

  • Kim, II Kwang;Jun, II Chul;Murray, Royce W.
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.292-301
    • /
    • 1996
  • The synthesis of poly(ether)tailed bipyridine complex as redox reaction probes has advanced attempts to interpret very slow diffusion and heterogeneous electron transfer. Diffusion coefficients as low as $1.5{\times}10^{-15}cm^2/s$ have been observed for the oxidation of neat $Co(bpy(ppgm)_2)_{3^-}(ClO_4)_2$ with $LiClO_4$ electrolyte. Heterogeneous electron transfer rate constants of materials were found to vary with diffusion coefficient. The decrease in k as the diffusion coefficient decreases was actually caused by the decreasing D. Diffusion coefficient for compound of strong ion pairing anion($ClO{_4}^-$) was much smaller than the diffusion coefficient for compound of weak ion pairing anion($CF_3COO^-$).

  • PDF

Charge-discharge behaviour of $LiNi_{0.85}Co_{0.15}O_2>/MPCF$ cell ($LiNi_{0.85}Co_{0.15}O_2/MPCF$전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.25-28
    • /
    • 1998
  • Lithiated cobalt and nickel oxides are becoming very attractive as active cathode materials for secondary lithium ion secondary battery. $LiCoO_2$ is easily synthesized from lithium cobalt salts, but has a relatively high oxidizing potential on charge. LiNiOz is synthesized by a more complex procedure and its nonstoichiometry significantly degraded the charge-discharge characteristics. But $LiNiO_2$ has a lower charge potential which increases the system stability. Lithiated cobalt and nickel oxides are iso-structure which make the preparation of solid solutions of $LiNi_{1-x}Co_xO_2$ for O$LiCoO_2 and LiNiO_2$ electrode. The aim of the presentb paper is to study the electrochemical behaviour, as weU as the possibilities for practical application of layered Iithiated nickel oxide stabilized by $Co^{3+}$ substitution as active cathode materials in lithium ion secondary battery.

  • PDF