• Title/Summary/Keyword: Cobalt nanoparticle

Search Result 19, Processing Time 0.025 seconds

Thermal Decomposition Synthesis of CoSb3 Nanoparticle by Hot Injection Method (열분해와 Hot Injection법을 이용한 CoSb3 나노분말합성)

  • Kim, Min-Suk;Ahn, Jong-Pil;Kim, Kyung-Ja;Park, Joo-Seok;Kim, Kyoung-Hun;Kim, Hyung-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.476-479
    • /
    • 2013
  • $CoSb_3$ with its high electrical conductivity, Seebeck coefficient and rather low thermal conductivity is quite a promising material for thermoelectric conversion applications. A potentially high figure of merit (ZT) can be achieved by a nanostructure evolution of thermoelectric materials. In this work, $CoSb_3$ nanoparticles were synthesized through a thermal decomposition method in cooperation with a hot injection technique. Nano-sized $CoSb_3$ particles were obtained through the thermal decomposition reaction between the pre-heated cobalt-oleate at $320^{\circ}C$ and the injected antimony oleate with room temperature. The results showed that the particle size was increased with increasing synthesis temperature and the crystallinity of particles was improved with temperature but the decomposition of $CoSb_3$ was observed at $320^{\circ}C$. The $CoSb_3$ particles synthesized at $300^{\circ}C$ showed a high purity and an homogeneous shape with average particle size of 26 nm.

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Enhancement of carbon dioxide absorption rate with metal nano particles (금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진)

  • Choi, Young Ju;Youn, Min Hye;Park, Ki Tae;Kim, In Ho;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6439-6444
    • /
    • 2015
  • With increasing concern about global warming, CCS (Carbon dioxide capture and storage) has attracted much attention as a promising technology for reducing $CO_2$ emission. It is necessary to develop the cost-effective absorbents materials in order to rapid commercialize CCS technologies. In this work, he study for the promotion of absorption rate in $CO_2$ capture system using metal nanoparticle were investigated. Three kinds of metal nanoparticle, cobalt, zinc, and nickel, were prepared by wet and dry method and effect of preparation method on the absorption rate of $CO_2$ were compared. Among the tested using pH method, nickel nanoparticle prepared by wet method showed the most significant improvement of $CO_2$ absorption rate. In case that metal nanoparticle is applied to CCS process, it is expected to be more efficient in $CO_2$ capture process due to reduce the size of absorption tower.

Synthesis and Surface Derivatization of Processible Co Nanoparticles

  • Lee, Jin-Kyu;Choi, Sung-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.32-36
    • /
    • 2003
  • Co nanoparticles were prepared by the reverse micelle technique (NaBH₄reduction of cobalt chloride in a reversed micelle solution of didodecyldimethylammoniumbromide (DDAB)/toluene). The size and the shape of Co nanoparticles could be easily controlled by changing the water contents and micelle concentrations, and the solubility of Co nanoparticles was systematically tuned by choosing appropriate surface capping organic ligand molecules. Furthermore, a novel nanofabrication process was clearly demonstrated, which generated oxide over-coated Co nanorods from Co nanoparticles in organic solution by slow oxidation with an external magnetic field.

Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil;Kim, Min-Suk;Kim, Se-Hoon;Lee, Byung-Ha;Kim, Do-Kyung;Park, Joo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.367-375
    • /
    • 2016
  • A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle (초상자성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화)

  • Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2008
  • In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a mircoemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 $\AA$. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite (다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성)

  • Lim, Hye-Min;Ryu, Kwang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Nanotube-based Dye-sensitized Solar Cells

  • Kim, Jae-Yup;Park, Sun-Ha;Choi, Jung-Woo;Shin, Jun-Young;Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.71-71
    • /
    • 2011
  • Dye-sensitized solar cells (DSCs) have drawn great academic attention due to their potential as low-cost renewable energy sources. DSCs contain a nanostructured TiO2 photoanode, which is a key-component for high conversion efficiency. Particularly, one-dimensional (1-D) nanostructured photoanodes can enhance the electron transport for the efficient collection to the conducting substrate in competition with the recombination processes. This is because photoelectron colletion is determined by trapping/detrapping events along the site of the electron traps (defects, surface states, grain boundaries, and self-trapping). Therefore, 1-D nanostructured photoanodes are advantageous for the fast electron transport due to their desirable features of greatly reduced intercrystalline contacts with specified directionality. In particular, anodic TiO2 nanotube (NT) electrodes recently have been intensively explored owing to their ideal structure for application in DSCs. Besides the enhanced electron transport properties resulted from the 1-D structure, highly ordered and vertically oriented nanostructure of anodic TiO2 NT can contribute additional merits, such as enhanced electrolyte diffusion, better interfacial contact with viscous electrolytes. First, to confirm the advantages of 1-D nanostructured material for the photoelectron collection, we compared the electron transport and charge recombination characteristics between nanoparticle (NP)- and nanorod (NR)-based photoanodes in DSCs by the stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). We confirmed that the electron lifetime of the NR-based photoanode was much longer than that of the NP-based photoanode. In addition, highly ordered and vertically oriented TiO2 NT photoanodes were prepared by electrochemical anodization method. We compared the photovoltaic properties of DSCs utilizing TiO2 NT photoanodes prepared by one-step anodization and two-step anodization. And, to reduce the charge recombination rate, energy barrier layer (ZnO, Al2O3)-coated TiO2 NTs also applied in DSC. Furthermore, we applied the TiO2 NT photoanode in DSCs using a viscous electrolyte, i.e., cobalt bipyridyl redox electrolyte, and confirmed that the pore structure of NT array can enhance the performances of this viscous electrolyte.

  • PDF