• Title/Summary/Keyword: Cobalt blue pigment

Search Result 18, Processing Time 0.023 seconds

Synthesis and Formation Mechanism of Cobalt Doped Willemite Blue Pigments (Co-Doped Willemite 파란색 안료의 합성과 생성기구)

  • Hwang, Dong-Ha;Han, Kyong-Sop;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.603-607
    • /
    • 2010
  • Turquoise blue pigment of Vanadium-zircon blue (DCMA number 14-42-2), which was already commercialized, was stable to be reproduced but insufficient to give strong blue. However, it possible to obtain more intense blue by partially substituting cobalt ions into the willemite($Zn_2SiO_4$) lattice classified into DCMA number 7-10-2 for blue ceramic pigment. By the composition of willemite $Co_xZn_{2-x}SiO_4$(X=0.01, 0.03, 0.05, 0.07, 0.09 mole), this study used reagent grade zinc oxide, cobalt oxide and silicon dioxide as starting materials, carrying out the synthesis with solid reaction method by adding $H_3BO_3$ as a mineralizer. The firing temperature was between $1200^{\circ}C$ and $1400^{\circ}C$. The characteristics of synthesized pigment were analyzed by X-ray diffraction, Raman spectroscopy and SEM and the characteristics of color tones were analyzed by UV-Vis spectroscopy and CIE-$L^*a^*b^*$ measurement. As a result, the optimal composition was $Zn_{1.95}Co_{0.05}$ with 1wt% of $H_3BO_3$ as a mineralizer and firing condition was $1350^{\circ}C$/3 h. $L^*a^*b^*$ value was 29.25, 41.03, -59.93 for on glaze pigment and 37.03, 36.41, -60.03 for under glaze pigment.

Synthesis and Mechanism of Ni-Doped Hibonite Blue Pigments (Ni-Doped Hibonite 파란색 안료의 합성과 발색기구)

  • Kim, Gumsun;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • NiO-doped hibonite pigments were synthesized by the solid state method to get stabilized blue color pigment in both oxidation and reduction atmospheres. Optimum substitution condition with NiO for hibonite blue pigment was investigated. Experimental results were comparable to those of previous cobalt-minimization studies performed with other phosphate- or oxide-based cobalt-containing ceramic pigments (having olivine ($Co_2SiO_4$), spinel ($CoAl_2O_4$), or with co-doped willemite ($(Co,Zn)_2SiO_4$) structures). Composition was designed varying the NiO molar ratio increasing with $SnO_2$. The optimum substitution content is 0.93 mole NiO with 0.75mole $SnO_2$. The characteristics of the synthesized pigment were analyzed by XRD, Raman spectroscopy, SEM, and UV-vis. Synthesized pigment was applied to a lime-barium glaze with 10 wt% each and fired at an oxidation atmosphere of $1250^{\circ}C/1h$ and a reducing atmosphere $1240^{\circ}C/1h$. Blue color was obtained with $L^*a^*b^*$ values at 43.39, -6.78, -18.20 under a reducing atmosphere and 41.66, -6.36, -14.7 under and oxidation atmosphere, respectively.

Preparation and Chrominance of Metal Oxide Coated Titania/Mica Pearlescent Pigment (금속산화물이 코팅된 마이카 티타니아 진주광택 안료의 제조 및 색차변화)

  • Lee, Kwan-Sik;Kang, Kuk-Hyoun;Lee, Jin-Hee;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.233-243
    • /
    • 2013
  • The inorganic pearlescent pigment have high physical and chemical stability, thus it is used in a variety field, which has better light stability, solvent resistance and thermostability. In this paper, we were synthesized the pearlescent pigment for cosmetics which was coated cobalt chloride for base of blue color metal oxide on mica titania substrate using hydrothermal synthesis method. To complement the color of the pigment by cobalt, pearl pigment were coated by different metal salt and cobalt ratio, to implement a variety of color value, depending on the kind of metal salts were synthesized. Synthesized pearlescent pigments appear various color as kind of added metal salt precursor and molar ration of cobalt and other metals. We controlled coating and color by composition of metal salt and type of metal salts, and that confirm the pigment characteristics of color changes through the analysis of color difference meter. Synthesized pigment was characterized by SPM, SEM, XRD, and EDS.

Characterization of Ceramic Material Coating by Cobalt Sulfate Using Spray Technique

  • Kim, Myung-Je;Won, Il-An;Kim, Kyung-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.180-180
    • /
    • 2013
  • Ceramic glaze has been developed by numerous experiences and knowhow of potters for a long time. It has offered curiosity and beauty to many people with a variety of colors. This study first verifies the color difference according to clays and glazing used for the coloration experiment based on generation process and chemical reaction of cobalt sulfate, and determines the effect of a dilution ratio with water on changes in coloration concentration. The cobalt-aluminate spinel and the cobalt-silicate olivine are the strongest of the ceramic pigment, producing a very pure, navy blue color.

  • PDF

Investigating the Colour Difference of Old and New Blue Japanese Glass Pigments for Artistic Use

  • Chua, Lynn;Quan, Seah Zi;Yan, Gao;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Colour consistency is an important consideration when selecting pigments used on works of art. In this study, we analyse the colour difference between two sets of synthetic blue glass pigments acquired at least 8 years apart from the same manufacturer in Japan. The old pigment set (unused, dry powder with four different grain sizes) appears faded compared to the new set. These pigments are made available for artistic use, commonly in Nihonga or Japanese paintings. Raman spectroscopy and SEM-EDS results characterize these pigments as cobalt aluminate spinels dissolved in leaded glaze, a special class of complex coloured inorganic pigments that is not well-understood in the field of conservation. Colour difference between the old and new pigments with four different grain sizes were quantified by analysing photomicrographs with image analysis software. Blue pigments with coarse and extremely fine grains showed significant colour change compared to pigments with medium and fine grain sizes. The high occurrence of crystallites in the finer grains give a final colour that is bluer and lighter. Possible causes for the colour difference including manufacturing methods and storage environment are discussed.

A Study on the NiO-doped Willemite Pigments (Ni-doped Willemite계 청색안료에 관한 연구)

  • Lee, Chi-Youn;Lee, Hyun-Soo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • To study the effect of color development of Ni-doped willemite blue pigments, five batches of compositions were prepared and fired at $1350^{\circ}C$/hold for 1 h. When Ni was substituted for ZnO by 0.03 mole the optimum result were obtained. Then they were fired at $1300^{\circ}C$ and held for 1, 2, 4 and 6 h respectively for the purpose sake. XRD, Raman spectroscopy, FT-IR, UV-vis were used to analyze the results of experiment. The substitution of 0.03mole Ni for Zn was most optimum and which produced good willemite at the temperature of $1300^{\circ}C$, holding for 6 h. In ceramic arts, cobalt has been used for blue coloring, in most cases, despite of its high cost. If the low cost Ni-doped willemite blue pigments supplies for them with stable and multiple shades of blue pigment, using NiO at high temperature, it would provide various blues for ceramic wares.

Effect of Variable Base Glaze on the Gradation of Colouring and Analysis of The Computer D-Base (기본유의 변화가 안료의 발색에 미치는 영향과 Computer D-base해석)

  • 임희진;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.333-342
    • /
    • 1999
  • This research was performed to investigate how the basic glaze change affected colour development at high temperature with a stable colorant (spinel structure CoAl2O4 pigment) The compounded pigment which is widely used for porcelain was also tested for the basic glazes adaptability. The data from the test were recorded in a computer data-base program. Therefore could be easily used in the study related with a pottery field. CoO : Al2O3 system spinel pigment of barium glaze lime glaze zinc glaze lead glaze and talc glaze were chosen for this study. The colors of Cobalt blue bright blue, blue purple were seen at the wave lengths of 455-480nm at the firing temperature of 1250$^{\circ}C$. Stable color were obtained from lime glaze bar-ium glaze zinc glaze. All the information in the database were used to examine all the possible result of the test in the study of porcelain. When the test results database were examined in all temperature ranges the lack of adhesion with the pigment occurred at the temperature of 1150$^{\circ}C$. The lack of adhesion is seen due to vaporization of the lead glaze.

  • PDF

Investigation of Color Mecchanism in Co-Doped Augite Purple for Color Glaze (Co-Doped Augite 보라색 유약의 발색기구)

  • Kwon, Young-Joo;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.271-275
    • /
    • 2013
  • Cobalt (Co) compounds have been used for centuries to impart rich blue color to glass, glazes and ceramics. Cobalt monoxide (CoO), an oxide of Co, is an inorganic compound that has long been used as a coloring agent in the ceramic industry. Unlike other coloring agents, CoO can be used to develop colors other than blue, and several factors such as its concentration in the glaze and firing condition have been suggested as possible mechanisms. For example, CoO produces a typical blue color called "cobalt blue" at very low concentrations such as 1 wt% in both oxidation and reduction firing conditions; a higher concentration of CoO (5 wt%) develops a darker blue color under the same firing conditions. Interestingly, CoO also develops a purple color at high concentrations above 10 wt%. In this study, we examined the applicability and mechanism of a novel purple glaze containing cobalt(II, III) oxide, one of the well characterized cobalt oxides. Experimental results show that an Augite crystal isoform (Augite-Fe/Co) in which Fe was replaced with Co is the main component contributing to the formation of the purple color. Based on these results, we developed a glaze using chemically synthesized Augite-Fe/Co crystal as a color pigment. Purple color glaze was successfully developed by the addition of 6~15 wt% of $Co_3O_4$ to magnesia lime.

Effect of cobalt sulfate contents on the ceramic surface coating using spray technique (스프레이 기술을 이용한 세라믹 표면 코팅에 대한 황화코발트 첨가량의 영향)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.256-260
    • /
    • 2014
  • This study was carried on the phenomena in reactivity with the clay surface according to the thickness of the cobalt component coating. In the coated specimen, it was observed that the cobalt component was spreaded to diffuse with a constant thickness from the surface of it and the diffusion layer at the white porcelain soil was more increased with the increase of the amount of cobalt sulfate than at the celadon porcelain one. It was evaluated that the color of the surface on the coated specimen at the white porcelain soil was changed from grayish blue to blue and the $L^*$ value was decreased from 51.78 to 37.61 and also in the case of the coated specimen in celadon porcelain soil, $L^*$ value was from 53.91 to 38.93 and the color was from dark olive gray to dark gray. The physical properties of the specimen were characterized by X-ray diffraction, Scanning electron microscope, Dilatometer, TG-DTA, UV-vis spectrophotometer and HRDPM.

Pigment Analysis and Conservation Method of Avalokitesvara in Potalaka of Hyeondeungsa, Gapyeong (가평 현등사 수월관음도의 안료분석 및 보존방법)

  • Seo, Jeong-Ho;Cha, Byung-Gap;Jung, Hee-Soo
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Buddha painting cultural properties couldn't avoid the change of colors and the exfoliation phenomenon by the characteristic of material and environmental factors. Especially, because in the beginning of the fine crack and the decoloration phenomenon on the surface of pigment would be significantly decrease stability of the whole object, it is necessary to take particular measure. Therefore, this is a study on conservation of Avalokitesvara in Potalaka in Hyeondeungsa in Gapyeong. It treated damaged parts of the object, carried out backing papers and matching colors. And then, it examined scientific analysis of pigments. Also, it performed nondestructive testing like XRF, FT-IR, and image microscope to investigate the quality of the material of hanji using the object and the component and characteristic of pigments. As a result, FT-IR spectrum matching Korean traditional paper(hanji) was detected in hanji of Avalokitesvara in Potalaka in Hyeondeungsa. The black pigment making a thin layer over the white pigment would estimate carbon compounds of unconfirmed ink stick or soot as XRF and FT-IR. Also, the white pigment was lead white($PbCO_3{\cdot}Pb(OH)_2$) involving Pb(Lead) and a carbonate. It was observed that the crystal of blue pigment had the different sizes of the particles from the microscope. In the case of this blue pigment, it showed cobalt blue and lead white was mixed when it used because both Cu and Pb were highly detected in XRF data.