• Title/Summary/Keyword: Cobalt Ion

Search Result 244, Processing Time 0.024 seconds

Study on the stability of ammonium cobalt thiocyanate solution and the formation of perthiocyanuric acid (Ammoninm Cobalt Thiocyanate 용액의 안정도 및 Perthiocyanuric acid의 생성반응에 관한 연구)

  • 최종인
    • YAKHAK HOEJI
    • /
    • v.7 no.2_3
    • /
    • pp.36-41
    • /
    • 1963
  • Cobalt thiocyanate ion에 미치는 영향을 연구하였다. Cobalt ion이 $NH_{4}CNS$ 용액에 의해서 생성되는 ion의 색의 transmittance는 확산에 의하여 적어지며, 황산존재하에서는 황산의 양과 Transmittance 사이에 비례적 관계가 있다. 염산 및 질산도 역시 Transmittance의 값에 영향을 미치기는 하나 염산의 경과에는 이 착 ion이 황산존재하보다 다소 불안정하며 질산에 의해서는 안정화가 극히 적어서 단시간내에 Perthiocyanuric acid로 인정되는 물질로 분해한다. 또한 그 Transmittance가 과량의 광산존재하에서 적어지는 현상으로 부터 $Co(SCN)^{2-n/_{$ n/의 n의 값이 커지는 것은 ether에 이행하는 SCN-을 Volhard 씨법으로 정량함으로서 확증하였다.

  • PDF

Removal of Cobalt Ions by Precipitate Foam Flotation (침전 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.11-16
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was t$\xi$sted by precipitate flotation using a sodium lauryl sulfate as a c collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign i ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% $H_2O_2$, prior to precipitate f flotation made shin of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of c cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial coball ion concentration 50 ppm, pH 9.5 gas flow rate 70 mllmin, flotation time 30 min. The simulate ion was fanned t to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested The presence of 0.1 M of $SO_4^{2-}$ ion decreased remo,때 $\xi$폐iciency of cobalt to 90% while the cobalt were almost entirely removed in the a absence of sulfate ion.

  • PDF

Extractive Metallurgy and Recycling of Cobalt (코발트의 제련과 리사이클링)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.252-261
    • /
    • 2022
  • Cobalt is a vital metal in the modern society because of its applications in lithium-ion batteries, super alloys, hard metals, and catalysts. Further, cobalt is a representative rare metal and is the 30th most abundant element in the Earth's crust. This study reviews the current status of cobalt extraction and recycling processes, along with the trends in its production amount and use. Although cobalt occurs in a wide range of minerals, such as oxides and sulfides of copper and nickel ores, the amounts of cobalt in the minerals are too low to be extracted economically. The Democratic Republic of Congo (DRC) leads cobalt mining, and accounts for 68.9 % of the global cobalt reserves (142,000 tons in 2020). Cobalt is mainly extracted from copper-cobalt and nickel-cobalt concentrates and is occasionally extracted directly from the ore itself by hydro-, pyro-, and electro-metallurgical processes. These smelting methods are essential for developing new recycling processes to extract cobalt from secondary resources. Cobalt is mainly recycled from lithium-ion batteries, spent catalysts, and cobalt alloys. The recycling methods for cobalt also depend on the type of secondary cobalt resource. Major recycling methods from secondary resources are applied in pyro- and hydrometallurgical processes.

Factors affecting the final antibiotic titer of sisomicin fermentation

  • 이상한;김성욱;신철수
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.514.2-514
    • /
    • 1986
  • Since sisomicin which is produced by Micromonospora inyoensis is an intracellular antibiotic, the final antibiotic titer to be attained depends singnificantly on the cell mass in fermentation broth. Cobalt ion in medium was indispensable for getting a high antibiotic titer. However, in the presence of cobalt ion in medium, the antibiotic production proceeded up to about 4 days and thereafter stopped. From the experiments on theaddition of cobalt ion to culture medium, it was shown that the antibiotic production stopped due to the other physiological properties of cells rather than the accumulation of antibiotic in cells.

  • PDF

Determination of Cobalt(III) Ion Using a Nafion-Ethylenediamine Modified Glassy Carbon Electrode

  • Kim, Seok Jin;Ko, Young Chun
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.188-192
    • /
    • 2014
  • Determination of cobalt(III) ion with a perfluorinated sulfonated polymer-ethylenediamine (nafion-en) modified glassy carbon electrode is studied. It is based on the chemical reactivity of an immobilized layer, nafion-en, to yield complex $[Co(en)_3]^{3+}$. The reduction peak potential by differential pulse voltammetry (DPV) is observed at $-0.437{\pm}0.047$ V (vs. Ag/AgCl). The linear calibration curve is obtained in cobalt(III) ion concentration range $1.0{\times}10^{-8}{\sim}1.0{\times}10^{-3}M$ ($5.893{\times}10^{-12}{\sim}5.893{\times}10^{-5}g/mL$).

Removal of Cobalt Ion by adsorbing Colloidal Flotation (흡착 교질 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(IlI) as flocclant and a sodium lamyl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., W앙e considered. The flotation with Fe(III) showed 99.8% removal efficiency of cohalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution, was treated with 35% $H_2O_2$ prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted m to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of $H_2O_2$. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation w wider. Foreign ions such as, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $Ca^{2+}$ were adopted and their effects were observed. Of which sulfate ion was f found to be detrimental to removal of cob퍼t ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in b better removal efficiency of cobalt IOn 피 the presence of sulfate ion.

  • PDF

Characterization of the enzymatic property of thermostable carboxypeptidase Taq by addition of metal ions and replacement of active center metal (금속이온 첨가와 활성중심 금속의 치환에 따른 내열성 카르복시펩 티다제 Taq의 효소적 특성 변화에 관한 연구)

  • Lee, Sang-Hyeon;Ha, Jong-Myung;Ha, Bae-Jin
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.682-687
    • /
    • 2002
  • We analyzed improvement on the enzyme activity of CPase Taq by addition of various metal ions. The enzyme activity was increased more then four times by 1 mM cobalt ion and almost three times by 1 mM calcium ion. However, the active center metal zinc ion did not affect the enzyme activity. In order to investigate whether the active center metal affects the enzyme activity, zinc ion which is occupied the active center of the enzyme was replaced by cobalt ion which activates the enzyme activity very effectively. Since the cobalt ion in the active center of the cobalt-substituted CPase Taq did not affect the enzyme activity, it could act as the natal metal ion in the active center of the enzyme.

Electrochemical Characteristics of Pseudocapacitor Using Aqueous Polymeric Gel Electrolyte (수용성 폴리머 겔 전헤액을 사용한 Pseudocapacitor의 전기화학적 특성)

  • Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.158-160
    • /
    • 2003
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400 F/g (specific capacitance) and good cycleability. But, it had serious demerits of low voltage range under 0.5 V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. We report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over 250 F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100 F/g capacitance. This capacitance was only electric double layer capacitance of active surface area. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Itis very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

Characteristics of the Electrochemical Ion Exchanger for the Treatment of Cations in Nuclear Wastewater (원자력 폐수의 양이온 처리를 위한 전기화학적 이온교환체의 특성)

  • Hwang, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.176-184
    • /
    • 2016
  • Electrochemical ion exchange method is expected to be one of the most acceptable techniques for the separation of radioactive cations from nuclear wastewater. In this study a thin film of hexacyanoferrate on nickel surface was derivatized chemically in an aqueous potassium-ferricyanide solution. Electrochemical redox behavior of the nickel hexacyanoferrate(NiHCNFe) film electrode was investigated with the use of cyclic voltammetry potentiostated from -100 to 800 mV versus SCE. The electro-reduction characteristics of the NiHCNFe film were examined in the cobalt solutions. The NiHCNFe ion exchanger was more useful at lower concentration, lower temperature, and pH7 of the cobalt solution. The capacity loss of NiHCNFe was 0.018%/cycle that was less than the average loss of 2~3%/cycle of the convective organic exchanger. The 45~55% of the initial cobalt ions was electro-deposited on the NiHCNFe by using continuous recirculating reactor system. As a result, it was found that the electroactive NiHCNFe films showed better performance than the organic resins for the separation of cobalt ion from the aqueous solutions.

TRANSPORT CHARACTERISTICS OF $CO^{2+}$ THROUGH AN ION EXCHANGE TEXTILES IN A CONTINUOUS ELECTRODEIONIZATION (CEDI) SYSTEM UNDER ELECTRO-REGENERATION

  • Moon, Seung-Hyeon;Song, Jung-Hoon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.132-135
    • /
    • 2004
  • It has been known that transport characteristics of ions are very complicated in CEDI system due to the inter-relations between ion exchange media and solution. Thus, this study sought to determine the ionic mobility of cobalt ion through cation exchange textile under electroregeneration and consequently verify the transport mechanisms of cobalt ion in a CEDI system.(omitted)

  • PDF