• Title/Summary/Keyword: Cobalt (II) complexes

Search Result 57, Processing Time 0.022 seconds

One-Pot Synthesis, Crystal Structures and Thermal Properties of Two Three-Dimensional Cobalt(II) Complexes

  • Tao, Bo;Lei, Wen;Cheng, Feiran;Xia, Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1929-1933
    • /
    • 2012
  • Two cobalt(II) compounds $[Co(2,2{^\prime}-bipy)(H_2O)_2(SO_4)]_n$ (1) and $[Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6]{\cdot}2H_2O$ (2) (2,2'-bipy = 2,2'-bipyridine, $H_4btec$ = 1,2,4,5-benzenetetracarboxylic acid), have been simultaneously synthesized by a one-pot slow solvent evaporation reaction. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction (XRPD), IR, elemental and thermogravimetric analysis (TGA). The structural analysis reveals that compound 1 exhibits an infinite 1D chain structure with the octahedral Co(II) centers bridging by the tetrahedral ${\mu}_2-SO{_4}^{2-}$ ligands, while compound 2 possesses a dinuclear $Co_2(2,2^{\prime}-bipy)_2(btec)(H_2O)_6$ unit and the two adjacent octahedral Co(II) ions are linked by the bismonodentately coordinated btec ligand. Additionally, compound 2 exhibits blue fluorescent emission in the solid state at room temperature.

Electrochemical Properties of Cobalt(II) Schiff Base Complexes in Nonaqueous Solvent (비수용매에서 Schiff Base를 가진 Cobalt(II) 착물들의 전기화학적 성질)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.97-101
    • /
    • 2002
  • Co(II) complexes with tridentate Schiff base-NOIPH and tetradentate Schiff base-$NOTDH_2$ and $TNBPH_4$ were synthesized. The redox process of the complexes in DMF solution containing 0.1M TBAP was investigated at glassy carbon electrode by cyclic voltammetry and differential pulse voltammetry techniques. Reduction step of [Co(II)$(NOIP)_2$] and [Co(II)$(H_2O)_2$] complexes were observed in two step as one electron process of irreversible or quasi-reversible and diffusion-controlled reaction. [$Co(II)_2$(TNBP)] complex was observed in one step as one electron process of quasi-reversible and diffusion-controlled reaction.

Synthesis and Characterization of Transition Metal(Ⅱ) Complexes with Tridentate Schiff Base in DMF Solution (DMF용액에서 세자리 Schiff Base를 가진 전이금속(II) 착물들의 합성과 구조결정)

  • Oh, Jeong Geun;Choi, Yong Kook
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.511-516
    • /
    • 1999
  • Shiff Base ligand such as [NOIPH] have been synthesized from 2-hydroxy-1-naphthaldehyde and arometic amine. Co(II), Ni(II), and Cu(II) complexes from the reaction metal salts with Tridentate Schiff Base [NOIPH] were sythesized. The ligand and metal(II) complexes were characterized by the elementary analysis, IR, UV-Vis, NMR spectra, and thermogravimetric analysis. Metal(II) complexes in solid state have been shown that the mole raio of Schiff base [NOIPH] as $N_2O$ type to Metal(II) is 2:1 and the metal(II) complexes of $N_2O$ ligand type were four-coordinated configuration.

  • PDF

Synthesis of $\pi$-Allyl-type Cobalt, Palladium, Platinum Complexes Having a $C_2$-Chiral Ligand ($C_2$ 손대칭 리간드를 배위하는 $\pi$-Allyl-Cobalt, Palladium, Platinum 착물의 생성)

  • Uhm, Jae Kook;Lee, Jong O;An, Hee Won
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.177-183
    • /
    • 1998
  • By the reactions of a $C_{2}$-chiral ligand, (+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene(6) with $[\pi-allyl chloroplatinum(II)]_4$, and $CpCo(CO)_2$ respectively, three new complexes, ($\pi$-allyl)platinum(II)(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene perchlorate(1), ($\pi$-allyl)platinum(II)(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene chloride(2), ($\eta^5$-cyclopentadienyl)cobalt(I)-(+)-11S,12S-bis[2,2'-(diphenylphosphino)benzanilido]-9,10-dihydro-9,10-ethanoanthracene(3) were prepared. $\eta^3$-Cyclohexenyl)palladium(II)1,2-bis(diphenylphosphino)ethane perchlorate(4) was obtained by the reaction of ($\eta^3$-cyclohexenyl)palladium(II) chloride dimer with a symmetric ligand, 1,2-bis(diphenylphosphino)ethane and lithium perchlorate. These complexes were identified by NMR-, IR-, and Mass-Spectrophotometers and elemental analyzer.

  • PDF

Oxidation Reaction of Hydrazobenzene by Activated Catalysts of Pentadentate Schiff Base Cobalt(Ⅲ)-O2 Complexes in Methanol Solvent (메탄올 용매에서 산소 첨가된 다섯자리 Schiff Base Cobalt(Ⅲ) 착물들의 활성 촉매에 의한 Hydrazobenzene의 산화반응)

  • No, Yun Jeong;Park, Dong Hwa;Jo, Gi Hyeong;Kim, Sang Bok;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.302-308
    • /
    • 1994
  • Homogeneous catalytic oxidation of hydrazobenzene was investigated by employing pentadentate Schiff base complexes such as [Co(II)(Sal-DPT)(H$_2$O)] and [Co(II)(Sal-DET)(H$_2$O)] in oxygen-saturated methanol solvent. The oxidation product of hydrazobenzene(H$_2$AB) was trans-azobenzene(trans-AB). The rate constants of oxidation reaction measured by UV-visible spectrophotometry were observed as $6.06{\times}10^{-3}sec^{-1}$ for [Co(II)(Sal-DPT)(H$_2$O)] and $2.50{\times}10^{-3}sec^{-1}$ for [Co(II)(Sal-DET)(H$_2$O)]. The mechanism of oxidation reaction for H$_2$AB by homogeneous activated catalysts has been proposed as following. H$_2$AB + Co(II)(L)(H$_2$O) + O$_2$ $\rightleftharpoons^K_{MeOH}Co(III)(L)O_2{\cdot}H_2AB + H_2O\longrightarrow^{k}Co(II)(L) + trans-AB + H_2O_2$ (L: Sal-DPT and Sal-DET)

  • PDF

Allyloxy-and Benzyloxy-Substituted Pyridine-bis-imine Iron(II) and Cobalt(II) Complexes for Ethylene Polymerization

  • Kim Il;Han Byeong Heui;Kim Jae Sung;Ha Chang-Sik
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.2-7
    • /
    • 2005
  • A series of ethylene polymerization catalysts based on tridentate bis-imine ligands coordinated to iron and cobalt was reported. The ligands were prepared through the condensation of sterically bulky anilines with allyloxy-and benzyloxy-substituted 2,6-acetylpyridines. The pre-catalyst complexes were penta-coordinate species of the general formula $\{[(ArN=C(Me))_2(4-RO-C_5H_3N)]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; R=allyl, benzyl; M=Fe, Co). In the presence of ethylene and methyl alumoxane cocatalysts, these complexes were active for the polymerization of ethylene, with activities lower than those of metal complexes of the general formula $\{[(2-ArN=C(Me)_2C_5H_3N]MCl_2\}$ (Ar=ortho dialkyl-substituted aryl ring; M=Co, Fe), containing no substituents in 2,6-acetylpyridine ring. The effects of the catalyst structure and temperature on the polymerization activity, thermal properties, and molecular weight were discussed.

Sythesis and Characterization of Transition Metal(II) Complexes with $NOTDH_2$ Schiff Base ($NOTDH_2$ Schiff Base를 가진 전이금속(II) 착물의 합성과 구조분석)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.498-503
    • /
    • 1999
  • Co(II), Ni(II), and Cu(II) complexes with tetradentate schiff base-$NOTDH_2$, were synthesized. The structures of these complexes were characterized by elemental analysis, IR, UV-visible, NMR spectra, and thermogravimetric analysis. The mole ratio of schiff base($NOTDH_2$) to the metal(II) at complexes was found to be 1:1. Cu(II) complexes were four-coordinated configuration, while Co(II) and Ni(II) complexes were hexacoordinated configuration containing two water molecules and all complexes were non-ionic compounds.

  • PDF

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Synthesis and Equilibria of Octahedral and Tetrahedral Complexes of Cobalt (II) 2,2'-Dipyridylamine

  • Paik Suh Myunghyun;Oh Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.5-9
    • /
    • 1982
  • Reactions of cobalt(II) chloride with 2,2'-dipyridylamine (dpa) in alcoholic solutions afford the complex of octahedral $Co(dpa)_2Cl_2{\cdot}CH_3OH$. The octahedral complex is converted to tetrahedral $Co(dpa)Cl_2$ in certain solvents or at the elevated temperature, and the tetrahedral complex is changed to the octahedral one with added dpa. The electronic spectra of the complexes in DMF, measured with various concentrations of 2,2'-dipyridylamine, establish the equilibrium; $td-Co(dpa)Cl_2+dpa_\rightleftarrows^Koh-Co(dpa)_2Cl_2$. The equilibrium constants determined by the analysis of the visible spectra are 6.4, 3.6 and 2.0 $M^{-1}$, respectively, at 25.5, 38.0 and $49.0^{\circ}C,\;with\;{\Delta}H^{\circ}\;and\;{\Delta}S^{\circ}$being -9.5 kcal/mole and -28 eu.