• Title/Summary/Keyword: Coaxial cylinder

Search Result 33, Processing Time 0.025 seconds

STUDY ON TORQUE CONVERTER USING ELECTRO-RHEOLOGICAL FLUID (존가점성 유체를 이용한 동력전달 장치에 관한 연구)

  • 이은준;박명관;주동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.542-545
    • /
    • 1995
  • This paper provides an investigation of torque converter system using ERF (Electro-Rheological Fluid). The torque converter system using ERP is a new concepting device because we can change an apparent viscosity of ERF by adapting an electric field. The device was designed by using the equations which were proposed by Carlson et al. The devices based on ERF generally assume one two possible forms. One is the parallel plate type in which the device elements are facing circular disks separated by a flat layer of ERF, The other is coaxial cylinder or Couette types in which the ERF file the annular apace between a pair of coaxial cylindrical electrode. The discussion on this study is specifically for coaxial cylinder gemetry and experiment results show that the measured torque was rapidly increased with the increase of the eletric field.

  • PDF

A Study on Torque Transmission Using Electro-Rheological Fluid (전기점성 유체를 이용한 동력전달 장치에 관한 연구)

  • 주동우;이은준;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.81-87
    • /
    • 1998
  • This paper provides an investigation of torque transmission system using ERF (Electro-Rheological Fluid). The torque transmission system using ERF is a new conception device because an apparent viscosity of ERF can be changed by applying an electric field, We use the coaxial cylinder type in which the ERF fills the annular space between a pair of coaxial cylindrical electrodes and experiment results show that the measured torque was increased with the increase of the electric field. These are analyzed to provide guidelines to assist in the development of practical ER devices.

  • PDF

Disintegration Mechanism of a Coaxial Porous Injector (동축형 다공성재 분사기의 분열 메커니즘)

  • Lee, Keonwoong;Kim, Dohun;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • In a coaxial porous injector, a gas propellant is injected through the porous cylinder surface to the liquid jet which is encircled by a porous cylinder. In this study, to observe the differences in disintegration mechanisms between a shear coaxial injector and a coaxial porous injector, cold-flow tests and 2-D axisymmetric numerical analysis have been carried out. The shadowgraph images and Sauter mean diameters were compared in similar experimental conditions, and the effects of velocity distributions at the inner injector region on the disintegration of liquid jet were investigated through the numerical calculations. As a result, in high air mass flow rate condition, the disintegration performance of coaxial porous injector is better than shear coaxial injector, in spite of a lower velocity at the inner injector region.

Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylindrical Duct Based on Spectral Method (스펙트럼 배치방법에 의한 원형도관내의 비점성유동장에 놓인 유연성 실린더의 안정성 분석)

  • Sim, Woo-Gun;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • A numerical method has been developed for studying the dynamics of a flexible cylinder in a coaxial cylindrical duct, immersed in inviscid flow. The unsteady inviscid fluid-dynamic force acting on the oscillating cylinder has been estimated more rigorously by means of a spectral collocation method without simplification of governing equations. This numerical approach is applicable to the system haying wider annular gap and/or shorter length of cylinder as compared to existing potential theory. The governing equation of the unsteady flow was obtained from Laplace equation. The equation of cylinder motion coupled with the fluid motion was discretized by Galerkin's method, from which the dynamic behaviour of the system has been evaluated. The effect of the length of the cylinder and the annular gap on the critical flour velocity, where the system loses stability by buckling, was investigated. To validate the numerical method, the potential flow theory developed by Hobson based on thin film approximation has been improved. Typical results of the present numerical theory on the dynamics and stability of the system are compared with those of available existing theory and the present approximate results. Good agreement was found between the results. It was also found that a nondimensional critical flow velocity becomes larger as increasing the annular gap and decreasing the length of cylinder.

  • PDF

An Analytical Model of Corona Discharge Plasmas in Coaxial Cylindrical Reactor (동축 원통형 코로나 방전 플라즈마의 해석적 모델)

  • 고욱희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.157-161
    • /
    • 2004
  • We present a simple analytical expression of plasma density by making use of the electron density equation to study the dynamic behavior of the corona discharge plasma. It assumes that a specified voltage profile is fed through the inner conductor of the reactor chamber consisting of two coaxial conducting cylinders. The analytical description is based on the electron continuity equation with ionization and attachment by electrons. It is found that the electron density profile calculated between two coaxial cylindrical electrodes depends very sensitively on the Profile of applied voltage. The analytical expression of plasma density and its generation will provide important scaling laws in the corona discharge plasma.

Augmentation of Radiative Heat Transfer in an Infinite Cylindrical Pipe Enclosing a Participating Gas (참여기체를 가진 무한 원형관 계의 복사 열전달 증진)

  • 변기홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1955-1962
    • /
    • 1992
  • The purpose of this study is to identify the radiative heat transfer augmentation by a coaxial cylinder introduced in the infinite cylindrical pipe enclosing a participating gas. The gas is either a mixture of water vapor and carbon dioxide or gray. The gas is assumed to be homogeneous at a constant temperature, and has a refractive index of unity. All of the surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature, The effect of system diameter, diameter ratio, wall emittances, gas and surface temperatures, mixture component on heat transfer augmentation are studied by using the zone method with participating gas radiative properties evaluated from the weighted sum of gray gases model. From the radiative equilibrium condition, the installed wall temperature is formulated and calculated by the iteration method. If the medium is a gray gas, the augmentation observed are negligible. For the range of values studied for a real gas, if the system diameter is larger than about 0.1m the augmentation parameter increases up to about 1.2 as the system diameter increases. The augmentation parameter have a maximum value at a certain diameter ratio. The augmentation parameters decreases as the emittance of the installed wall decreases. If the gas temperature is higher than about 1273 k, the augmentation parameter decreases as the gas temperature increases.

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Rheological Properties of Cement Paste Blended Blast Furnace Slag or Fly Ash Powder (고로슬래그 및 플라이 애시 분말을 혼합한 시멘트 페이스트의 유동특성)

  • Song, Jong-Taek;Park, Hyo-Sang;Byun, Seung-Ho;Yoo, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.336-344
    • /
    • 2008
  • Rheological properties of cement pastes containing blast furnace slag (BFS: 3,900, $7,910\;cm^2/g$) or fly ash powder (FA: 4,120, $8,100\;cm^2/g$) according to the ratio of water/binder (W/B) and the dosage of polycarboxylate type superplasticizer (PC) were investigated by a mini slump and a coaxial cylinder viscometer. In this experiment, the ratio of replacing OPC with BFS or FA was 30 wt%, the W/B was from 30 to 70 wt%. As a result, the fluidity of cement paste containing BFS or FA was improved with increasing W/B and the dosage of PC. BFS or FA replaced cement paste with W/B 70% and PC 0.3% showed the highest fluidity. The segregation range of cement paste was occurred below $10\;d/cm^2$ of the yield stress and below 50 cPs of the plastic viscosity by the coaxial cylinder viscometer. And also it was formed that the plastic viscosity and the yield stress of FA replaced cement paste were higher than them of BFS replaced cement paste.