• Title/Summary/Keyword: Coaxial cable

Search Result 167, Processing Time 0.02 seconds

Implementation of PLC-Based Multi-modem for Process Automation of Non-destructive Inspection (비파괴검사 공정자동화를 위한 전력선통신 기반 복합통신장치의 구현)

  • Jung, Jun Hwan;Jun, Ho Ik;Kim, Hyun-Sik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.822-828
    • /
    • 2013
  • In this paper, a multi-modem for process automation of non-destructive inspection (NDI) which possibly generates various kinds of data is implemented and verified. Here, a variety of data such as control signals, text data, image data generated by inspection devices, sensors, computers are transmitted to the multi-modem via serial, Ethernet, and coaxial cable. We exploit a communication network in which powerlines are used as backbone transmission media. Thus, the implemented multi-modem has various ports and corresponding interfaces for data transmission. As a result of practical experiments, the multi-modem maintains almost constant data rate with little waveform distortion. In addition, the experiments confirm that the modem operates normally under extreme variation of temperature. It is, therefore, considered that the multi-modem can contribute significantly to implement powerline communication (PLC)-based process automation for NDI in which various kinds of data are practically generated.

Input Impedance Calculation of the Power Line Communication System (전력선 통신 시스템의 입력 임피던스 계산)

  • Chun, Dong-wan;Lee, Jin-taek;Park, Young-Jin;Kim, Kwan-Ho;Shin, Chull-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.983-990
    • /
    • 2004
  • In this paper, we calculated the input impedance of the power line communication(PLC) networks using medium voltage power line. First of all, we proposed input and output teoninal model of PLC network, and calculated the input impedance applying the attenuation constants by radiation loss, conductor loss, dielectric loss. From the calculation result, we knew that the attenuation by radiation loss was largest, and the input impedance appears like a standing wave fonn with a fixed cycle because the high reflection at the input terminal for the characteristic impedance of the power line is very large. And also the cycle of input impedance depends on the coaxial cable length, and the amplitude depends on the characteristic impedance of power line and losses. From the measurement result, calculated result was very similar to the measured result.

Design and Trend Analysis According to the Application Field of Monopole Antenna with Sleeve Structure (슬리브 구조를 갖는 모노폴 안테나의 활용분야에 따른 설계와 동향분석)

  • Kang, Sang-Won;Byeon, Mi-Kyeong;Lee, Shin-Hee;Choe, Gwang-Je
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2020
  • This paper summarizes the data of a monopole antenna with a sleeve structure that can be applied in various ways. Sleeve monopole antennas have broadband characteristics and are used for multi-frequency applications. The sleeve monopole antenna is composed of a vertical conductor, which is a radiator, and a sleeve having the same structure as a coaxial cable. The sleeve acts as a radiator and an open stub. The length of the sleeve should be 1/3~2/3 of the total length of the antenna. A monopole antenna having a sleeve structure is applicable to a vehicle wiper antenna. In addition, the case of applying this antenna to a broadband sleeve antenna using a loading coil, a broadband printed sleeve monopole antenna for an ISM band, a gap sleeve and a double sleeve, and a UWB planar monopole antenna using half cutting was summarized and analyzed in terms of structure and broadband.

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.

A RF Microstrip Balun Using a Wilkinson Divider and 3-dB Quadrature Couplers (월킨슨 분배기와 90도 위상차 분배기를 이용한 RF 마이크로스트립 발룬)

  • Park Ung-Hee;Lim Jong-Sik;Kim Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.246-252
    • /
    • 2005
  • A RF microstrip balun having low transmission loss for the balanced receiving dipole antenna is designed and fabricated using a three-section Wilkinson divider and two 3-dB quadrature couplers. It considers two types of the three-section Wilkinson dividers, the Cohn's optimum three-section structure and the miniaturized three-section structure, for wideband power splitting. Also, two 3-dB quadrature couplers for 180 degrees of phase difference adopt a twist-wire coaxial cable. The fabricated first balun having the Cohn's optimum three-section Wilkinson divider has 0.5 dB of transmission loss, $\pm$0.2 dB of amplitude imbalance, and 180$\pm$2.3 degrees of phase imbalance over 400 to 1000 MHz by measurement. The second one using the miniaturized three-section Wilkinson divider shows 1.0 dB of transmission loss, $\pm$0.7 dB of amplitude imbalance, and 180$\pm$8.8 degrees of phase imbalance over the same frequency band.

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.

Development and Characterization of High Frequency Ultrasonic Transducer Using PVDF and P(VDF-TrFE) (PVDF 및 P(VDF-TrFE)를 이용한 고주파수 수침용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The high frequency ultrasonic transducers using polyvinyliden fluoride(PVDF) and polyvinylidene fluoride trifluorethyylene(P(VDF-TrFE)) were developed. The characteristics of fabricated high frequency ultrasonic transducer such as beam diameter, high frequency ultrasonic detection field and amplitude of the first pulse echo signal from the test target in the water were analyzed. The high frequency ultrasonic detection field was affected by the length of coaxial cable between high frequency transducer and ultrasonic pulser/receiver. As the size of the test target increased, the high frequency detection field decreased and the amplitude of a reflection signal increased. The peak amplitude of the first pulse echo signal of P(VDF-TrFE) transducer was higher than that of PVDF transducer. The high frequency ultrasonic detection field of PVDF transducer was wider than that of P(VDF-TrFE) transducer. With C-scan testing, the developed high frequency ultrasonic transducer could detect the 30 to $100{\mu}m$ of hydrogen induced crack of steel specimen by C-scan testing.