• Title/Summary/Keyword: Coating structure

Search Result 1,217, Processing Time 0.023 seconds

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers (선박 프로펠러의 케비테이션 침식 저항 향상을 위한 Ni-P 무전해 도금층 형성 및 열처리를 통한 미세조직 제어)

  • Kim, Young-jae;Son, In-Jun;Yi, Seonghoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.409-415
    • /
    • 2017
  • For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.

Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating (유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향)

  • Kim, Dong Kyu;Maeng, Wan Young
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

Investigation of Streaky Mark Defect on Hot Dip Galvannealed IF Steel

  • Xinyan, Jin;Li, Wang;Xin, Liu
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2010
  • Interstitial-free (IF) steels are widely used for car body material. However, a few types of streaky mark defect are commonly found on hot dip galvannealed (GA) IF steel sheets. In the present study, both the phase structure of a streaky mark defect and the microstructure of the substrate just below it were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). It was found that the bright streaky mark area was composed of ${\delta}$ phase while the dark normal area was full of craters. More than half of the grains at the uppermost surface of the substrate just below the streaky mark defect are unrecrystallized grains which could result from lower finish rolling temperature during hot rolling and be kept stable during the annealing process, while almost all the grains in the normal area are equiaxed grains. In order to confirm the effect of the unrecrystallized grains on the coating morphology, hot dip galvannealing simulation experiments were carried out in IWATANI HDPS. It is proved that the unrecrystallized grains accelerate the Fe-Zn reaction rate during galvannealing and result in a flatter coating surface and an even coating thickness. Finally, a formation mechanism of the streaky mark defect on the hot dip galvannealed IF steel sheet was discussed.

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

The Electric Characteristics of $Ba_{0.7}Sr_{0.3}TiO_{3}$ by Coating Numbers (코팅 횟수에 따른 $Ba_{0.7}Sr_{0.3}TiO_{3}$ 박막의 전기적 특성)

  • Hong, Kyung-Jin;Min, Yong-Gi;Min, Hyunc-Chul;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.42-45
    • /
    • 2001
  • The high permittivity are applied to DRAM and FRAM. (Ba,Sr)$TiO_3$ (EST) thin films were prepared by Sol-Gel method. BST solution was made and spin-coated on $Pt/SiO_2/Si$ substrate at 4000 [rpm] for 10 seconds in a time coating. Coated specimens were dried at $90[^{\circ}C]$ for 5 minutes. Coating process was repeated from 3 times to 5 times and then sintered at $750[^{\circ}C]$ for 30 minutes. Each specimen was analyzed structure and electrical characteristics. Thickness of BST ceramics thin films are about 2600-2800[$\AA$] in 3 times. Dielectric constant of thin films was little decreased at 1[KHz]~1[MHz]. Dielectric constant and loss to frequency were 250 and 0.02 in BST3. The property of leakage current was stable When the applied voltage was 0~3[V] Leakage current was $10^{9}\sim10^{11}$[A] at 0~3[V].

  • PDF

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

Study on the Optimization of Superhydrophobic Coating for the Durability of Gas Diffusion Layer in Alkaline Fuel Cells (알카라인 연료전지 가스확산층 내구성 향상을 위한 초발수 코팅 최적화 연구)

  • Kim, Soong Yeon;Seo, Minhye;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.691-695
    • /
    • 2017
  • Optimization study was carried out to improve the durability of the gas diffusion layer (GDL) in alkaline fuel cell cathode by the use of highly stable PDMS superhydrophobic coating. Two different commercial GDLs were selected as substrates. Coating temperature and viscosity of PDMS were controlled for the stability of structure in microporous layer of GDL as well as uniform coating according to thermal characteristics of GDL. Regardless of PDMS viscosity, highly stable superhydrophobicities were obtained with both GDLs at $200^{\circ}C$. After the accelerated test, however, 28BC GDL coated with 1000 CS PDMS showed the best durability with the lowest loss of superhydrophobicity.

Comparison of Tribological Characteristics of ZnO Coatings Prepared by Sputtering and Sol-gel Methods

  • Lin, Li-Yu;Kim, Dae-Eun
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.23-26
    • /
    • 2009
  • In this work the tribological characteristics were compared between ZnO coatings on glass substrate prepared by sputtering and sol-gel methods. In order to assess the effects of processing method on the tribological characteristics, the friction and wear properties of the coatings were measured by using a reciprocating type of micro-tribotester. The sputtered ZnO coatings were prepared on a glass substrate at room temperature, $150^{\circ}$, and $300^{\circ}$. The ZnO coatings prepared by sol-gel method were heat-treated in air atmosphere at $550^{\circ}$ for one hour. The crystal structure and surface morphology of the coatings were measured by X-ray diffraction (XRD) and Atomic Force Microscope (AFM), respectively. The experimental results showed that overall the sputtered coatings exhibited better friction and wear properties than coatings prepared by sol-gel method. The sputtered coating grown at room temperature had a relatively low friction coefficient of 0.14 and superior wear resistance compared with the other coatings. Nevertheless, sol-gel method of coating ZnO on glass is beneficial for economical coating of a large surface area.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.