• 제목/요약/키워드: Coating structure

검색결과 1,212건 처리시간 0.036초

Ni-Al계 금속간화합물 코팅에 미치는 고주파유도 가열 조건의 영향 (Effects of Induction Heating Conditions on Ni-Al Based Intermetallic Compound Coating)

  • 이한영;김태준;조용재
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.141-147
    • /
    • 2010
  • An Ni-Al intermetallic coating has been produced by induction heating on mild steel. The effect of the induction heating conditions on the microstructure of the coating has been investigated. The reaction synthesis of the intermetallic compounds was promoted while increasing the heating rate and the holding time at reaction temperature. Especially, an NiAl phase corresponding to the initial composition of mixed powder was predominantly formed. However, the synthesis at low reaction temperatures occurred by solid state diffusion during the holding time and an Fe-Al reaction layer was formed at the interface with the substrate, regardless of the heating rate. The combustion synthesis of the intermetallic compound occurred at a temperature higher than 1023 K and resulted in an almost single phase NiAl structure.

The Critical Pigment Volume Concentration Concept for Paper Coatings: I. Model Coating Systems Using Plastic Pigments and Latex Binders for Paper Coating Applications

  • Lee, Do-Ik
    • 펄프종이기술
    • /
    • 제34권5호
    • /
    • pp.1-17
    • /
    • 2002
  • The immobilization and consolidation of the model coatings based on the plastic pigment and latex binder of known particle sizes were theoretically Studied in terms of the dense random packing of binary spheres and varying extent of latex film shrinkage. The porosity of the model coatings was calculated based on three proposed latex shrinkage models: Maximum, Minimum, and Linearly Decreasing Latex Shrinkage. The increasing extent of latex shrinkage was calculated up to the critical pigment volume concentration(CPVC) as a function of plastic pigment volume fractions, and the maximum latex shrinkage was estimated from the CPVC. Also, the number of pores and the average equivalent spherical pore diameters were calculated based on those proposed models. The opacity and gloss of the model coatings on polyester films were measured and their porosity was also determined by a simple coat weight-thickness method. As expected, various coating structure-property-composition relationships, such as opacity, gloss, porosity, etc., were shown to exhibit sharp transitions near the CPVC. The CPVC values determined by the opacity, gloss, and porosity vs. PVC relationships, respectively, agreed very well with each other. Especially, the CPVC's determined by the opacity and porosity vs. PVC curves were identical. The comparison between the theoretically calculated and experimental porosity values showed that the intermediate value between the maximum and minimum latex shrinkage would best fit the experimental porosity data. The effect of plastic pigment particle size on the optical properties and porosity of model coatings was also studied and it was observed that the coating opacity and porosity increased with increasing plastic pigment particle size, but the gloss decreased. The ink gloss of the uncalendered model coatings applied onto commercial sheet offset coated papers was shown to be affected by both the coating gloss and porosity: the higher the coating gloss, the higher the ink gloss, but the higher the coating porosity, the lower the ink gloss. Their printability was also studied in terms of the number of passes-to-fail and the rate of ink setting as a function of both plastic pigment volume fractions and plastic pigment particle sizes. A minimum crack-free temperature(MCR) of latex-bound coatings was proposed to better predict the behaviors of latexes as coating binders. The wet state of model coating dispersions, the surfaces of consolidated model coatings, and their internal structure were examined by both electron and atomic force microscopy, and their micrographs were found to be consistent with our immobilization and consolidation models.

무전해 도금에 의해 성장되어진 은 나노결정의 반사율 특성 (Reflectivity characteristics of Ag nano-crystals grown by electroless plating)

  • 김신우
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.218-223
    • /
    • 2013
  • 본 연구에서는 LCD 또는 LED를 이용한 디스플레이 장치의 BLU 반사판으로 사용할 목적으로 무전해도금에 의하여 플라스틱 기판위에 성장되어진 은 나노코팅의 반사율 특성을 조사하였다. 은 나노코팅의 미세구조는 아주 미세한 나노크기의 은 결정들로 이루어진 다결정 나노코팅인 것을 확인할 수 있었으며 코팅 층의 두께가 증가함에 따라 환원, 석출된 은 나노결정입자의 크기도 비례하여 증가되었다. 은 나노코팅의 두께가 증가함에 따라 가시광선 영역의 반사율이 감소하였으며 파장이 짧을수록 반사율의 감소가 더 심하였다. 나노코팅의 두께 증가에 따른 반사율의 감소는 환원 석출된 은나노결정의 크기와 밀접하게 관련된 것으로 은 결정입자가 클수록 요철의 정도가 심하여 반사율이 감소하는 것으로 생각되어진다. 그래서 가능한 미세한 은 나노결정을 환원, 석출시키고 코팅두께를 얇게 하는 것이 반사율 관점에서 바람직한 것으로 판단되어진다.

아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동 (Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments)

  • 박진성;이호종;김성진
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

철계 비정질 분말을 활용한 초고속 용사 코팅층 개발 (Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying)

  • 김정준;김송이;이종재;이석재;임현규;이민하;김휘준;최현주
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.483-490
    • /
    • 2021
  • A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

대면적 페로브스카이트 태양전지 제작을 위한 슬롯-다이코팅 방법 (Slot-die Coating Method for Manufacturing Large-area Perovskite Solar Cell)

  • 오주영;하재준;이동근
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.918-925
    • /
    • 2021
  • 페로브스카이트 태양전지는 기존의 실리콘 태양전지를 대체하는 차세대 태양전지로서, 페로브스카이트 구조를 가진 유-무기 하이브리드 물질을 광 활성층으로 사용하는 태양전지 소자로 고효율, 저가의 용액 공정 및 저온 공정에 유리한 장점들을 가지고 있으며 지난 10년간 빠른 효율 향상을 보여주었다. 이러한 페로브스카이트 태양전지의 상용화 과정에서 대면적 코팅 방법에 대해서 연구개발이 진행되어야 한다. 대면적 페로브스카이트 태양전지 대면적 코팅 방법 중 하나로 슬롯-다이 코팅방법에 대해서 연구 진행하였다. 메니스커스를 이용하여 기판 위를 지나가며 용액을 코팅하는 방법으로 3D printer에 메니스커스를 장착하여 코팅을 할 수 있도록 하였다. 코팅 시 작용하는 변수로는 bed 온도, coating speed, N2 blowing간격, N2 blowing 높이, N2 blowing세기등이 있으며 이를 조절하여 페로브스카이트 흡수층을 제작 진행하였으며, 대면적 소자 제작을 위한 코팅 조건을 최적화 하였다.

플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향 (Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product)

  • 김기연;소성민;오민석
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • 제31권3호
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

The Influence of Hydrotalcite Intercalated with Benzoate on UV Stability of Acrylic Coating

  • Nguyen, Thuy Duong;Nguyen, Anh Son;Thai, Thu Thuy;Pham, Gia Vu;To, Thi Xuan Hang;Olivier, Marie-Georges
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.16-22
    • /
    • 2020
  • It is important to realize that benzoate was intercalated into hydrotalcite (HTC-Bz) by the co-precipitation method. In this case, acrylic coating with 0.5 wt% HTC-Bz was deposited on carbon steel using the spin coating method. Next, the HTC-Bz structure was characterized by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In fact, an ultraviolet vision spectroscopy (UV-Vis) was used to determine the benzoate content in HTC-Bz, and the UV absorption ability of HTC-Bz. Using electrochemical techniques, water contact angle measurement, and thermal-gravimetric analysis, we compared the protective properties before and after QUV test, hydrophobicity and the thermal stability of acrylic coating containing HTC-Bz. The obtained results showed that HTC-Bz with a plate-like structure was successfully synthesized; benzoate was intercalated into the interlayer of hydrotalcite with a concentration of 28 wt%. Additionally, it was noted that HTC-Bz has an UV absorption peak at 225 nm. In conclusion, the addition of HTC-Bz enhanced the UV stability, hydrophobicity and the thermal stability of acrylic coating.

폴리도파민 표면화학: 발명 10 년의 이야기 (Recent progress on polydopamine surface chemistry)

  • 엄수민;박홍기;박지효;홍선기;이해신
    • 접착 및 계면
    • /
    • 제19권1호
    • /
    • pp.19-29
    • /
    • 2018
  • 바다에서 서식하는 홍합의 독특한 수중 접착성을 모방하여 개발된 폴리도파민 (polydopamine) 코팅 기술은 2007년 처음 발표된 이래 지난 10년 동안 전세계적으로 매우 크게 발전하였다. 표면 비특이적인 코팅 능력을 통해 이제까지 표면 개질이 어려웠던 다양한 표면을 제한 없이 기능화 할 수 있는 유일한 표면 화학으로 자리 잡았으며, 또한 다양한 반응 조건에서의 코팅 방법이 새롭게 보고되면서, 산업 전반에 걸친 폴리도파민의 응용 범위가 기하급수적으로 넓어지고 있다. 한편, 밝혀지지 않은 폴리도파민의 복잡한 화학적 구조와 형성 반응 메커니즘에 관한 재료화학적 기초 연구도 지속적으로 보고되고 있으며, 폴리도파민의 전구체인 도파민 (dopamine)과 유사한 분자 구조를 가지는 다양한 카테콜아민 (catecholamine) 화합물과 폴리페놀 (polyphenol)의 표면 코팅 능력이 새로이 밝혀지고 있다. 본 연구에서는, 지난 10년 동안 전세계적으로 급속한 발전을 이룬 폴리도파민의 특성 및 응용 분야에 대해 살펴보고, 이를 통해 폴리도파민의 표면 화학 분야에서의 의의와 가능성에 대해 논의하고자 한다.