• Title/Summary/Keyword: Coating solution

Search Result 1,322, Processing Time 0.03 seconds

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Preparation of PES Hollow Fiber Membranes and Their $O_2/N_2$ Permeation Properties (폴리이서설폰 중공사막의 제조 및 $O_2/N_2$ 투과특성)

  • Park, Sung-Ryul;Chang, Bong-Jun;Ahn, Hyo-Seong;Kim, Dong-Kwon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.62-71
    • /
    • 2011
  • Highly enriched oxygen is used in energy-efficient combustion due to decreased non-flammable nitrogen, while high purity nitrogen is used for explosion proof in the LNG ships and keeping the freshness of green stuffs. Membrane technology can be used in these $O_2$ and $N_2$ generation with low energy consumption. In this study, PES was used as a membrane material and 1-methyl-2-pyrollidone (NMP) and acetone were employed as a good solvent and nonsolvent addictive (swelling agent to PES), respectively. Dope solutions were prepared by changing the content of acetone (0, 6.5, 15, 25, 31.5 wt%) in 37 wt% PES solutions. Hollow fiber spinning was performed at 0~10 cm of air-gap distances for each dope solution. $O_2/N_2$ selectivity and permeability were investigated by comparing of hollow fibers coated or not by silicons. $O_2/N_2$ selectivity increased and permeance of $O_2$ and $N_2$ decreased with increasing air-gap height independently of acetone addictions. Optimized PES hollow fibers were obtained with 37/6.5/56.5 wt% PES/acetone/NMP dope solution and 10 cm air-gap, which showed 7.3 of $O_2/N_2$ selectivity and 4.3 GPU of $O_2$ permeability after silicon coating.

Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating (서브 마이크론급 구리 입자의 은도금 공정에 따른 내산화성 강화 연구)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • To fabricate a copper (Cu)-based fine conductive filler having antioxidation property, submicron silver (Ag)-coated Cu particles were fabricated and their antioxidation property was evaluated. After synthesizing the Cu particles of $0.705{\mu}m$ in average diameter by a wet-reduction process, Ag-coated Cu particles were fabricated by successive Ag plating using ethylene grycol solvent. Main process parameters in the Ag plating were the concentration of reductant (ascorbic acid), the injection rate of Ag precursor solution, and the stirring rate in mixed solution. Thus, Ag plating characteristics and the formation of separate fine pure Ag phase were observed with different combinations of process parameters. As a result, formation of the separate pure Ag phase and aggregation between Ag-coated Cu particles could be suppressed by optimization of the process parameters. The Ag-coated Cu particles which were fabricated using optimal conditions showed slight aggregation, but excellent antioxidation property. For example, the particles indicated the weight gain not exceeding 0.1% until $225^{\circ}C$ when they were heated in air at the rate of $10^{\circ}C/min$ and no weight gain until 75 min when they were heated in air at $150^{\circ}C$.

Synergistic Solvent Extraction of Manganese(II) by using Cupferron and Tetrabutylammonium ion (Cupferron과 Tetrabutylammonium ion을 이용한 Mn(II)의 상승용매 추출에 관한 연구)

  • In, Gyo;So, Jin-Hwan;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The synergistic solvent extraction of Mn(II) by N-nitroso-N-phenylhydroxylamineammonium salt (cupferron) and tetrabutylammonium ion ($TBA^+$) has been studied. In the presence of $TBA^+$, over 95% Mn(II) was extracted from an aqueous solution into chloroform by the cupferron in the pH range of 4 to 10. But a part of Mn(II) was extracted with only cupferron. The ternary complex of Mn(II) was more efficiently extracted into $CH_2Cl_2$ and $CHCl_3$ than other nonpolar solvents. The extracted Mn(II) was determined in the back-extracted $HNO_3$ solution by GF-AAS. This fixed procedure was applied to the determination of trace Mn(II) in tap water samples of pH 5.0. The detection limit equivalent to 3 times standard deviation of the background absorption was 0.37 ng/mL and Mn(II) was determined with the range of 0.4 to 1.01 ng/mL in our laboratory's tap water. And the recovery was 94 to 107% in samples in which 2.0 ng/mL Mn(II) was spiked. The interferences of common concomitant elements such as Cu(II), Ca(II), Fe(III) and so on were not shown up to $10{\sim}20{\mu}g/mL$. From these results, this procedure could be concluded to be applied for the determination of trace Mn(II) in other environmental water samples.

Stability Enhancement of IZOthin Film Transistor Using SU-8 Passivation Layer (SU-8 패시베이션을 이용한 솔루션 IZO-TFT의안정성 향상에 대한 연구)

  • Kim, Sang-Jo;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.33-39
    • /
    • 2015
  • In this work, SU-8 passivated IZO thin-film transistors(TFTs) made by solution-processes was investigated for enhancing stability of indium zinc oxide(IZO) TFT. A very viscous negative photoresist SU-8, which has high mechanical and chemical stability, was deposited by spin coating and patterned on top of TFT by photo lithography. To investigate the enhanced electrical performances by using SU-8 passivation layer, the TFT devices were analyzed by X-ray phtoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FTIR). The TFTs with SU-8 passivation layer show good electrical characterestics, such as ${\mu}_{FE}=6.43cm^2/V{\cdot}s$, $V_{th}=7.1V$, $I_{on/off}=10^6$, SS=0.88V/dec, and especially 3.6V of ${\Delta}V_{th}$ under positive bias stress (PBS) for 3600s. On the other hand, without SU-8 passivation, ${\Delta}V_{th}$ was 7.7V. XPS and FTIR analyses results showed that SU-8 passivation layer prevents the oxygen desorption/adsorption processes significantly, and this feature makes the effectiveness of SU-8 passivation layer for PBS.

Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method (용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향)

  • Yook, Seung Ho;Yoon, Ki Ro;Choi, Jihun;Lee, Ju Sung;Kim, Jong Min;Lee, Seung Woo;Lee, Kwan-Young;Kim, Jin Young
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.413-419
    • /
    • 2019
  • In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogen-based clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteristics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

Effects of Salts and Acid Solutions on the Weathering of Granite (화강암의 풍화에 미치는 염분과 산성용액의 영향)

  • Shon, Byung-Hyun;Jung, Jong-Hyeon;Kim, Hyun-Gyu;Yoo, Jeong-Gun;Lee, Hyung-Kun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Because the stone cultural properties located outdoors, they have been altered and deteriorated in external appearance due to environmental factors such as acid rain, extreme change in temperature, and salts. Damage to stone cultural properties is accelerated particularly due to recent industrial development and environmental pollution. An experimental study was conducted to evaluate the effect of environmental contaminants on the weathering of granite. And as part of the developing of conservation method, $TiO_2$ catalyst was prepared and tested. When fresh granite was dipped into the salt and acid solutions, dissolution rate of eight minerals (Si, Mg, Ca, Na, K, Fe, Mn, Al) are abruptly increased at initial stage of reaction and then increased steadily until 100 cycles. After salt and acid solution experiments, the mineral compositions of the granite surface were lower then that of the fresh granite and density of the weathered granite was steadily decreased from $2.60\;g/cm^3$ to $2.56\;g/cm^3$, but Poissions ratio and absorption ratio were slightly increased. It was expected at stone cultural assets could be weathered by salts and acid rain. In the case of $TiO_2$ was coated to the granite, the dissolution rate of minerals and absorption ratio of $TiO_2$ coated granite were decreased. Therefore, the $TiO_2$ coating method tested in this study considered to be a viable method to assist in the conservation of stone cultural properties from environmental contaminants.

The Study of Nano-vesicle Coated Powder (나노베시클 표면처리 분체의 개발연구)

  • Son, Hong-Ha;Kwak, Taek-Jong;Kim, Kyung-Seob;Lee, Sang-Min;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.45-51
    • /
    • 2006
  • In the field of makeup cosmetics, especially, powder-based foundations such as two-way cake, pact and face powder, the quality of which is known to be strongly influenced by the properties of powder, surface treatment technology is widely used as a method to improve the various characteristics of powder texture, wear properties, dispersion ability and so on. The two-way cake or pressed-powder foundation is one of the familiar makeup products in Asian market for deep covering and finishing purpose. In spite of the relent progress in surface modification method such as composition of powders with different characteristics and application of a diversity of coating ingredient (metal soap, amino acid, silicone and fluorine), this product possess a technical difficulty to enhance both of the adhesion power and spreadability on the skin in addition to potential claim of consumer about heavy or thick feeling. This article is covering the preparation and coating method of nano-vesicle that mimic the double-layered lipid lamellar structure existing between the corneocytes of the stratum corneum in the skin for the purpose of improving both of two important physical characteristic of two-way cake, spreadability and adhering force to skin, and obtining better affinity to skin. Nano-vesicle was prepared using the high-pressure emulsifying process of lecithin, pseudo ceramide, butylene glycol and tocopheryl acetate. This nano-sized emulsion was added to powder-dispersed aqueous phase together with bivalent metal salt solution and then the filtering and drying procedure was followed to yield the nano-vesicle coated powder. The amount of nano-vesicle coated on the powder was able to regulated by the concentration of metal salt and this novel powder showed the lower friction coefficient, more uniform condition of application and higher adhesive powder comparing with the alkyl silane treated powder from the test result of spreadability and wear properties using friction meter and air jet method. Two-wav cake containing newly developed coated powder with nano-vesicle showed the similar advantages in the frictional and adhesive characteristics.