• Title/Summary/Keyword: Coating blade

Search Result 78, Processing Time 0.036 seconds

LASER CONSOLIDATION OF THE PLASMA COATED CHROME CARBIDE LAYER (레이저를 이용한 크롬카바이드 플라즈마 용사층의 특성향상)

  • An, Hui-Seok;Lee, Chang-Hui
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 1997
  • This paper evaluated the feasibility of laser consolidation for improving the properties of the plasma coated layer, Further, the mechanim of the degradation sequence of the chrome carbide layer applied on the turbine blades was postualted. The laser consolidation could be successfully applied for improcing the surface properties of the plasma coated blade, if a proper condition was carefully chosen. The consolidated layer had erosion & corrosion resistance and vond strength superiro to those of the as-plasma coated layer. The properties of the consolidated layer were strongly dependent upon the degree of dilution, especially on the Fe pickup from the substrate. The degradation of the plasma coating layer was thought to be a reault of the repeating action of the solid particle erosion, corrosion penetration through the pores and oxide films formed along the interlayer surface and impact spalling.

  • PDF

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.

Effect of Coating Technique on the Characteristics of ZnS(Ag) Scintillation Composite for Alpha-ray Detection (알파선 측정용 ZnS(Ag) 섬광 복합체의 특성에 있어 도포방법이 미치는 영향)

  • Jung, Yeon-Hee;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.604-608
    • /
    • 2006
  • Polymer composites for measuring the radioactive contamination are prepared by coating ZnS(Ag) powders as a scintillator on polysulfone base layer. The composites consist of the active layer for a scintillation reaction with radioactive wastes and the transparent support layer for transmittance of light photons emitted by scintillation in the active layer. The binding of the active layer, including ZnS(Ag), on the support layer is proceeded via coating with polysulfone as a binder, without any extra adhesive. The coating was obtained by either casting via a Doctor Blade as applicator or screen printing. The prepared composites feature a monolithic structure, resulting in the complete adhesion between two layers. The composite prepared by the casting technique using an applicator holds a good detection efficiency in measuring the alpha radionuclide, but its structure becomes fragile because of warping in morphology. On the contrary, the composite prepared by the screen printing shows a good detection capacity as well as a good stability in a mechanical shape.

Fabrication of Transparent Electrode Film for Organic Photovoltaic using Ag grid and Conductive Polymer (Ag grid와 전도성 고분자를 이용한 인쇄기반 OPV용 투명전극 형성)

  • Yu, Jongsu;Kim, Jungsu;Yoon, Sungman;Kim, Dongsoo;Kim, Dojin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.1-116.1
    • /
    • 2011
  • Materials with a combination of high electrical conductivity and optical transparency are important components of many electronic and optoelectronic devices such as liquid crystal displays, solar cells, and light emitting diodes. In this study, to fabricate a low-resistance and high optical transparent electrode film for organic photovoltaic, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of thermal roll imprinted (TRI) poly-carbonate (PC) patterned films, the manufacture of high-conductivity and low-resistance Ag paste which was filled into patterned PC film using a doctor blade process and then coated with a thin film layer of conductive polymer by a spin coating process. As a result of these imprinting processes the PC films obtained a line width of $10{\pm}0.5{\mu}m$, a channel length of $500{\pm}2{\mu}m$, and a pattern depth of $7.34{\pm}0.5{\mu}m$. After the Ag paste was used to fill part of the patterned film with conductive polymer coating, the following parameters were obtained: a sheet resistance of $9.65{\Omega}$/sq, optical transparency values were 83.69 % at a wavelength of 550 nm.

  • PDF

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

Fabrication of large area OPV cells (대면적 유기 태양 전지의 제작)

  • Byun, Won-Bae;Shin, Won Suk;Ryu, Ka Yeon;Park, Hye Sung;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.69.2-69.2
    • /
    • 2010
  • Recently, bulk hetero-junction cells have been extensively studied by many researchers. Most of these cells were fabricated by spin coater. However, the spin coating process is not favorable to the large-scaled industry because it is not compatible with roll-to-roll process. One of the alternative methods is Doctor blading. In this study, we fabricated large OPV cells having total area of $100cm^2$. The buffer layer was Poly-(3,4-ethylenedioxythiophene) : poly-(styrenesulfonate) aqueous dispersion (PEDOT:PSS) and the active material is poly (3-hexythiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blend in the solvent of Chlorobenzene. All of the organic layers were coated by dragging the blade with a speed of 5~20 mm/s on the stage with a temperature of $50^{\circ}C$. As-bladed PEDOT:PSS layer was baked at $120^{\circ}C$ for 10 minutes to eliminate the water. The cell structure is patterned ITO substrate/PEDOT:PSS/P3HT:PCBM/LiF/Al. The topmost electrode, LiF/Al, was deposited by thermal evaporation. After depositing electrode, and the cell was annealed at $150^{\circ}C$ for 30 minutes. The measured ISC, VOC, fill factor, and PCE were 2.95 A, 5.86 V, 0.32, and 0.78%, respectively. PCE was quite low but the large active area could be obtained successfully.

  • PDF

ZnO blocking layer를 이용한 염료감응형 태양전지의 특성 연구

  • Lee, Sang-Hyeon;Wi, Jin-Uk;Seo, Byeong-Chan;Sin, Tae-Ho;Hong, Byeong-Yu;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.258.2-258.2
    • /
    • 2015
  • 염료감응형 태양전지(Dye-Sensitized Solar Cells; DSSC)는 공정비용과 재료가 저렴하여 차세대 태양전지로 각광받고 있다. 특히 투명한 재료를 사용하므로 flexible한 기판을 이용하여 그 적용범위가 넓다. DSSC는 상부전극인 FTO와 전해질의 접촉으로 인해 일부 FTO의 전자가 외부로 나가지 못하고 산화환원 반응에 의해 도로 전해질로 들어갈 확률이 있다. 이로 인해 효율 감소문제를 야기 할 수 있다. 이를 해결하기 위해 FTO위에 여러 물질들을 증착하거나 코팅 등의 많은 연구가 이루어져 왔다. ZnO를 DSSC로 적용한 연구는 많이 이루어졌지만 대부분 공정이 Chemical Vapor Deposition (CVD)으로 진행 되어왔다. 본 연구에서는 FTO위에 ZnO를 진공 공정에 비해 저렴하고 간단한 spin-coating으로 blocking layer를 형성하였다. 그 후 염료에서 여기 된 전자를 FTO로 전달해 주는 역할을 하는 TiO2를 doctor blade방법으로 형성하였다. ZnO는 TiO2하고 전도대와 가전자대의 에너지 준위 차이가 거의 없고, ZnO의 전자 이동도가 TiO2보다 높기 때문에 FTO로 전자를 큰 저항 없이 전달 할 수 있다. 또한 투과율이 좋아 염료까지의 빛의 투과성도 뛰어나다. ZnO blocking layer를 형성하여 FTO에서 전해질로의 전자이동을 막아주는 역할을 하여 DSSC의 performance 향상을 확인하였다. Field Emission Scanning Electron Microscope(FE-SEM)을 통해 FTO/ZnO/TiO2의 계면 및 두께를 확인하였고. DSSC의 특성 분석을 위해 I-V curve, Power conversion efficiency, Impedance spectroscopy를 측정 하였다.

  • PDF

A comparative study on the characteristics of dye-sensitized solar cell according to Pt solution annealing temperature (Pt solution 소성 온도에 따른 염료감응형 태양전지 특성 비교 연구)

  • Kim, Byung-Man;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Prabakar, Kandasamy;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1509-1510
    • /
    • 2011
  • 염료 감응형 태양전지 동작에 있어 상대전극 표면에서 전해질의 산화, 환원 반응이 일어나기 위한 촉매의 역할이 중요하며 그 중 Pt는 촉매로써 널리 쓰이는 물질이다. Pt 도포 방식은 sputtering, Pt paste를 이용한 doctor blade, Pt solution을 이용한 spin coating 등 여러 가지가 있으며 제작 조건에 따라 그 특성도 다르게 된다. 따라서 본 연구에서는 Pt solution의 열처리에서 온도를 달리하여 그에 따른 특성을 알아보자 하였다. 그 결과 Pt solution 소성온도가 $400^{\circ}C$일 때, 가장 적절한 Pt층이 형성되기 때문에 산화, 환원반응이 활발하게 되어 높은 효율(6.8%)의 DSC 특성을 얻을 수 있었다.

  • PDF