• Title/Summary/Keyword: Coating Uniformity

Search Result 143, Processing Time 0.02 seconds

Yielding behaviour of organically treated anatase $TiO_2$ suspension

  • Guo, J.;Tiu, C.;Uhlherr, P.H.T.;Fang, T.N.
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • The rheological behaviour of anatase $TiO_2$ with organic coating has been investigated extensively in this study. The yield stress was measured over a wide range of solids concentration and pH using stress-controlled and speed-controlled rheometers. The organic treatment leads to a shift of the isoelectric point (IEP) from around pH 5.5 to pH 2.4. A maximum yield stress occurs in the vicinity of the isoelectric point determined by electrokinetic measurements. The transition of rheological behaviour between elastic solid and viscous liquid is represented by a stress plateau in a plot of stress against strain. It is hypothesised that the slope of the stress plateau reflects the uniformity of the structure, and hence the distribution of bond strength. Altering the concentration and the surface chemistry can vary the bond strength and its distribution. therefore, resulting in different type of failure: "ductile-type" or "brittle-type". pH and volume fraction dependence of yield stress could be described quantitatively using existing models with reasonable agreement.easonable agreement.

Enhanced Adhesion and Transmittance Uniformity in Laminated Polymer-Dispersed Liquid Crystal Films

  • Yoo, Seong-Hyeon;Park, Min-Kyu;Park, Ji-Sub;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.753-761
    • /
    • 2014
  • We propose a two-step UV irradiation procedure to fabricate polymer-dispersed liquid crystal (PDLC) films by lamination. During the first UV treatment, before lamination, the UV-curable monomers coated on one film substrate are solidified through photo-polymerization as the phase separation between the liquid crystals and the monomers. Introducing an adhesion-enhancement layer on the other plastic substrate and controlling the UV irradiation conditions ensure that UV-induced cross-linkable functional groups remain on the surfaces of the photo-polymerized layers. Thereby, the adhesion stability between the top and bottom films is much improved during a second (post-lamination) UV treatment by further UV-induced cross-linking at the interface. Because the adhesion-enhancement and PDLC layers prepared by the bar-coating process are solidified before lamination, the PDLC droplet distribution and the cell gap between the two plastic substrates remain uniform under the lamination pressure. This ensures that the voltage-controlled light transmittance is uniform across the entire sample.

Construction Method of Seohae Grand Bridge (서해대교 시공 공법 소개)

  • Yoon Tae Seob
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.255-266
    • /
    • 2000
  • Since 1993, Seohae grand bridge has been continued construction for 7 years and will be completed late this year. The bridge is a part of west sea castal highway and consists of 3 types of bridge including precast segmental method, free cantilever method and cable stayed bridge. A cable stayed bridge is the core of this bridge and it consists of 5 span, symetrical cable-stayed bridge with a total length of 990 m. The main span between two H-shaped pylons extending approximately 180 M above massive foundation of a cable stayed bridge is 470 m long and an approach span of that is 260 m long respectively. The circular cofferdam with 16 ea of 25 m diameter flat type sheet pile had been applied to construct foundation. The slipform method had been applied for forming of con'c of two H-shaped pylons with 3 cross beams respectively which is varied horizontally and vertically. The deck has been erected with balanced cantilever method using movable derrick crane. The stay cables is a bundle of parallel individually protected, 7 wire high tensile strands. The strands is hot deep galvanized and sheathed with a tight high density polyethylene coating. A petroleum wax fills all the inter-wire voids. The bundle of strands to prevent from deterioration due to the ambient problem covered with high density polyethylene pipe. The Isotension method has been applied for the stressing of cable strands to ensure uniformity of force in all the strands of a syay and such works has been performed on the stay specially provided in the pylon.

  • PDF

Development of Superfinishing Machine to Polish the Inner Surfaces of Aircraft Hydraulic Oil Reservoirs (항공기 유압유 저장조 내면연마를 위한 슈퍼피니싱 장치 개발에 관한 연구)

  • Choi, Su Hyun;Kong, Kwang Ju;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.110-116
    • /
    • 2020
  • Aircraft hydraulic oil reservoirs made with aluminum 7075 have an anodized coating to enable airtightness and corrosion resistance. To maintain a stable oil pressure, the internal surface roughness of the reservoir should be less than approximately 0.2 ㎛. To this end, precision polishing must be performed. However, ensuring the processing quality is challenging, as most polishing operations are performed manually, owing to which, the inner surface roughness is not uniform, and the product quality is irregular. Therefore, we developed a special superfinishing machine to realize the efficient inner polishing of an aircraft hydraulic oil reservoir, by using an abrasive film to improve the process throughput and uniformity. In the experiment involving the superfinishing of an anodized aluminum 7075 cylinder specimen by using the proposed machine, a higher surface roughness than that achieved in the repetitive manual polishing process could be realized.

Development of MEMS based Piezoelectric Inkjet Print Head and Its Applications

  • Shin, Seung-Joo;Lee, Hwa-Sun;Lee, Tae-Kyung;Kim, Sung-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.20.2-20.2
    • /
    • 2010
  • Recently inkjet printing technology has been developed in the areas of low cost fabrication in environmentally friendly manufacturing processes. Although inkjet printing requires the interdisciplinary researches including development of materials, manufacturing processes and printing equipment and peripherals, manufacturing a printhead is still core of inkjet technology. In this study, a piezoelectric driven DOD (drop on demand) inkjet printhead has been fabricated on three layers of the silicon wafer in MEMS Technology because of its chemical resistance to industrial inks, strong mechanical properties and dimensional accuracy to meet the drop volume uniformity in printed electronics and display industries. The flow passage, filter and nozzles are precisely etched on the layers of the silicon wafers and assembled through silicon fusion bonding without additional adhesives. The piezoelectric is screen-printed on the top the pressure chamber and the nozzle plate surface is treated with non-wetting coating for jetting fluids. Printheads with nozzle number of 16 to 256 have been developed to get the drop volume range from 5 pL to 80 pL in various industrial applications. Currently our printheads are successfully utilized to fabricating color-filters and PI alignment layers in LCD Flat Panel Display and legend marking for PCB in Samsung Electronics.

  • PDF

Coverlayer Fabrication of Small Form Factor Optical Disks

  • Kim, Jin-Hong;Kim, Jong-Hwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.188-191
    • /
    • 2005
  • Two different coverlayers which is useful for an optical buffer and a mechanical protection made of not only UV resin but also polycarbonate coversheet were prepared on small form factor optical disks. Thin coverlayer of 10 ${\mu}m$ and thick coverlayer of 80 ${\mu}m$ were fabricated. 10 ${\mu}m$-thick coverlayer was coated using UV resin material by spin coating method for the flying optical head application. On the other hand, 80 ${\mu}m$-thick coverlayer using coversheet with the resin bonding material was prepared for the non-flying optical head application. Both cases, the thickness uniformity seem to be the primary prerequisite factor, and it was analyzed. Thickness of 10 ${\mu}m$-thick UV resin coverlayer could be controlled within ${\pm}0.2m$ range and 80 ${\mu}m$-thick coversheet could be controlled within ${\pm}3{\mu}m$ range. However, the yield of such thickness tolerance was not good. New design of metal housing holder and polycarbonate outer ring was adopted to diminish the ski-jump phenomenon. Specifically, the polycarbonate outer ring was very effective to reduce the ski-jump. However, it should be careful to maintain uniform edge between disk and ring for the perfect coverlayer.

  • PDF

Pulsed Magnet ron Sputtering Deposit ion of DLC Films Part II : High-voltage Bias-assisted Deposition

  • Chun, Hui-Gon;Lee, Jing-Hyuk;You, Yong-Zoo;Ko, Yong-Duek;Cho, Tong-Yul;Nikolay S. Sochugov
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.148-154
    • /
    • 2003
  • Short ($\tau$=40 $mutextrm{s}$) and high-voltage ($U_{sub}$=2~8 kV) negative substrate bias pulses were used to assist pulsed magnetron sputtering DLC films deposition. Space- and time-resolved probe measurements of the plasma characteristics have been performed. It was shown that in case of high-voltage substrate bias spatial non-uniformity of the magnetron discharge plasma density greatly affected DLC deposition process. By Raman spectroscopy it was found that maximum percentage of s $p^3$-bonded carbon atoms (40 ~ 50%) in the coating was attained at energy $E_{c}$ ~700 eV per deposited carbon atom. Despite rather low diamond-like phase content these coatings are characterized by good adhesion due to ion mixing promoted by high acceleration voltage. Short duration of the bias pulses is also important to prevent electric breakdowns of insulating DLC film during its growth.wth.

Electroless Nickel Plating on Fibers for the Highly Porous Electrode

  • Cheon, So-Young;Park, So-Yeon;Rhym, Young-Mok;Kim, Doo-Hyun;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.117-120
    • /
    • 2010
  • Materials used as fuel cell electrode should be light, high conductive, high surface area for reaction, catalytic surface and uniformity of porous structure. Nickel is widely used in electrode materials because it itself has catalytic properties. When used as electrode materials, nickel of only a few im on the surface may be sufficient to conduct the catalytic role. To manufacture the nickel with porous structure, Electroless nickel plating on carbon fiber be conducted. Because electroless nickel plating is possible to do uniform coating on the surface of substrate with complex shape. Acidic bath and alkaline bathe were used in electroless nickel plating bath, and pH and temperature of bath were controlled. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As increasing pH and temperature, the rate of electrolee plating was increased. The content of phosphorous in nickel deposit was higher in acidic bath than that in alkaline bath. As a result, the uniform nickel deposit on porous carbon fiber was conducted.

Analysis and Optimization on Inside Flows of Fluid in Roll-to-Roll Slot-Die Nozzle by CFD Simulation (CFD 해석을 이용한 롤투롤 슬롯-다이 내부 유동 분석 및 최적화)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.611-616
    • /
    • 2016
  • Computational fluid dynamic simulation based on the ABAQUS software was conducted to observe the inside flow of slot-die nozzle. The slot-die nozzle was modeled as 3-dimensional structure and three significant parameters were determined: inlet velocity of fluid, reservoir angles, number of strips none of which have been mentioned previously in the literature. The design of experiment, full factorial analysis was performed within determined design and process levels. The simulation result shows the inlet fluid velocity is most significant factor for the flows of inside nozzle. As an interaction effect, reservoir angle is closely related with number of strip that should address when the nozzle is designed. Moreover, the optimized values of each determined parameter were obtained as 35 mm/s of inlet velocity, 3 of strip numbers, and $22^{\circ}$ of reservoir angles. Based on these parameters, the outlet velocity was obtained as 0.53% of outlet uniformity which is improved from 8.67% of nominal results.

Printing of Nano-silver Inks with Ink-jet Technology and Surface Treatment (잉크젯 기술자 표면처리 기술을 이용한 나노 실버 잉크 프린팅)

  • Shin, Kwon-Yong;Lee, Sang-Ho;Kim, Myong-Ki;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Kang, Kyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.104-105
    • /
    • 2007
  • In this study, characteristics of silver ink-jet printing were investigated under various substrate treatments such as substrate heating, hydrophobic coating, and ultraviolet(UV)/ozone soaking. Fluorocarbon(FC) film was spin-coated on the polyimide (PI) film substrate to obtain a hydrophobic surface. Although hydrophobicity of the FC film could reduce the diameter of the printed droplets, the singlet images printed on the FC film surface showed irregularities in the pattern size and the position of the printed droplet along with droplet merging phenomenon. The proposed UV/ozone soaking of the FC film improved the uniformity of the pattern size and the droplet position after printing and substrate heating was very effective way in preventing droplet merging. By heating of the substrate after UV/ozone soaking of the coated FC film, silver conductive lines of 78-116 ${\mu}m$ line were successfully printed at low substrate temperatures of $40^{\circ}C$.

  • PDF