• 제목/요약/키워드: Coating Thickness and Roughness

검색결과 114건 처리시간 0.024초

실험적 방법을 통한 Metal slitting saw의 형상 및 절삭 조건의 최적화 (Optimization of a geometric form and cutting conditions of a metal slitting saw by experimental method)

  • 정경득;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.934-938
    • /
    • 2000
  • Built-up edge affects the surface integrity of the machined surface and tool wear. Tool geometry and cutting conditions are very important factors to remove BUE. In this paper, we optimized the geometry of the metal slitting saw .1nd cutting conditions to remove BUE by the experiment. In general, the metal slitting saw is plain milling cutter with thickness less of a 3/16 inch. This is used for cutting workpiece where high dimensional accuracy and surface finish are necessary. The experiment was planned with Taguchi method that is based on the orthogonal array of design factors(coating, rake angle, number of tooth, cutting speed, feed rate). Response table was made by the value of the surface roughness, the optimized tool geometry and cutting conditions through response table could be determined. In addition. the relative effect of factors were identified by the variance analysis. filially. coating and cutting speed turned out important factors.

  • PDF

Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.544-550
    • /
    • 2018
  • The passivation of AZ91D Mg alloys by plasma anodization requires deliberate choice of process parameters due to the presence of large amounts of structural defects. We study the dependence of pore formation, surface roughness and corrosion resistance on voltage by comparing the direct current (DC) mode and the pulse wave (pulse) mode in which anodization is performed. In the DC plasma anodization mode, the thickness of the electrolytic oxide film of the AZ91D alloy is uneven. In the pulse mode, the thickness is relatively uniform and the formed thin film has a three-layer structure. The pulse mode creates less roughness, uniform thickness and improved corrosion resistance. Thus, the change of power mode from DC to pulse at 150 V decreases the surface roughness (Ra) from $0.9{\mu}m$ to $0.1{\mu}m$ and increases the corrosion resistance in rating number (RN) from 5 to 9.5. Our study shows that an optimal oxide film can be obtained with a pulse voltage of 150 V, which produces an excellent coating on the AZ91D casting alloy.

Dip-coating법에 의한 ${alpha}-Fe_2O_3$막 제조에 관한 연구 (A study on the preparation of ${alpha}-Fe_2O_3$films by dip-coating method)

  • 강경원;정용선;현부성;오근호
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.292-298
    • /
    • 1998
  • 출발원료로 ferric nitrate, ethylene glycol, acethyl acetone 혼합용액을 사용하여 dip-coating된 ${\alpha}-Fe_2O_3$ 막을 제조하였다. coating을 위한 혼합용액의 시간 경과에 따른 용액내의 가교(polymerization) 효과를 관찰하기 위해서 적외선 분광기(FT-IR)를 사용하였고, 막 형성시 유기물 분해 및 결정화 시작온도를 확인하기 위하여 FT-IR, XRD, DSC 등을 이용하여 분석을 행하였다. 또한 AFM과 SEM을 통하여 각 조건에서 제조된 막의 표면상태 및 두께 변화에 대하여 관찰되었다.

  • PDF

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

PECVD를 이용한 DLC 두께 제어에 따른 간섭색 구현 (Tuning the Interference Color with PECVD Prepared DLC Thickness)

  • 박새봄;김광배;김호준;김치환;최현우;송오성
    • 한국재료학회지
    • /
    • 제31권7호
    • /
    • pp.403-408
    • /
    • 2021
  • Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.

AIP 코팅법에서 로의 온도가 고속도강의 TiN 코팅에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Furnace Temperature on TiN-Coating of High Speed Steel by Arc Ion Plating)

  • 김해지;이상욱;전만수
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, effect of temperature in TiN-coating by arc ion plating on surface characteristics of a TiN coated high speed steel is investigated by experiments. Hardness, surface roughness, TiN-coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, one-way ANOVA method is used. It is concluded that the furnace temperature in the range $400^[\circ}C\~500^{\circ}C$ in AIP processing has a little influence on the TiN coating of the SKH51 steels.

종이 도공용 고광택 유기안료의 적용에 관한 연구(제2보) -안료의 혼합비율이 도공층의 적층구조와 광학적 특성에 미치는 영향- (Studies on the Application of High-Gloss Plastic Pigment for Paper Coating(II) -Effect of Mixing Ratio of Pigment on the Packing Structure and Optical Properties of Coated Paper-)

  • 이용규;정경모
    • 펄프종이기술
    • /
    • 제32권4호
    • /
    • pp.41-48
    • /
    • 2000
  • The main objective of this study was to investigate the packing state and optical properties of coated paper prepared with different coating colors by varying the blending ratio of such pigment as clay, $CaCO_3$, and plastic pigment. To evaluate the effect of packing state of pigment on the properties of coated paper, the coating thickness, which was theoretically calculated by specific gravity, and packing volume of pigment were used. It was found that there exists close relationship between the coating thickness and surface property of coated paper. For instance, the macro roughness(smoothness) of coated paper is closely related to bulkiness. Plastic pigments used in this research has a high finishing efficiency on the light weight coatings. Especially, hollow sphere pigment was very effective for improving the property of coated paper produced in this test. And when HSP was blended with $CaCO_3$the surface property such as smoothness and gloss improved significantly.

  • PDF

Investigation of Functional 6061 Aluminum Alloy Oxide Film with Anodization Voltage and its Corrosion Resistance

  • Jisoo Kim;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.399-407
    • /
    • 2023
  • This study investigated the formation of oxide films on 6061 aluminum (Al) alloy and their impacts on corrosion resistance efficiency by regulating anodization voltage. Despite advantageous properties inherent to Al alloys, their susceptibility to corrosion remains a significant limitation. Thus, enhancing corrosion resistance through developing protective oxide films on alloy surfaces is paramount. The first anodization was performed for 6 h with an applied voltage of 30, 50, or 70 V on the 6061 Al alloy. The second anodization was performed for 0.5 h by applying 40 V after removing the existing oxide film. Resulting oxide film's shape and roughness were analyzed using field emission-scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Wettability and corrosion resistance were compared before and after a self-assembled monolayer (SAM) using an FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution. As the first anodization voltage increased, the final oxide film's thickness and pore diameter also increased, resulting in higher surface roughness. Consequently, all samples exhibited superhydrophilic behavior before coating. However, contact angle after coating increased as the first anodization voltage increased. Notably, the sample anodized at 70 V with superhydrophobic characteristics after coating demonstrated the highest corrosion resistance performance.

ENIG 표면처리 공정 및 특성에 관한 연구 (A Study on the ENIG Surface Finish Process and Its Properties)

  • 이홍기;손성호;이호영;전준미
    • 한국표면공학회지
    • /
    • 제40권1호
    • /
    • pp.32-38
    • /
    • 2007
  • Ni coating layers were formed using a newly developed electroless Ni plating solution. The properties of Ni coating layer such as internal stress, hardness, surface roughness, crystallinity, solderability and surface morphology were investigated using various tools. Results revealed that internal stress decreased with plating time and reached $40N/mm^2$ at 20 minutes of the plating time. Hardness increased with increasing P content and thickness. Surface roughness of the pad decreased with Ni and Ni/Au plating. Crystallinity decreased with increasing P content. Solderability based on wettability decreased with Ni and Ni/Au plating. Based on surface morphology, it is expected that Ni coating layer formed using a newly developed electroless Ni plating solution is lower than that formed using a commercial electroless Ni plating solution in possibility of black pad occurrence.

RE Magnetron Sputtering에 의해 제조된 HAp와 HAp-Ag복합코팅층의 미세조직 (Microstructures of HAp and HAp-Ag Composite Coating Layer Prepared by RS Magnetron Sputtering)

  • Lee, Hee-Jung;Oh, Ik-Hyun;Park, Sang-Shik;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.328-333
    • /
    • 2004
  • RF magnetron sputtering법에 의해 단상의 하이드록시아파타이트와 하이드록시아파타이트은 복합코팅층을 ZrO$_2$와 Si 웨이퍼 기판에 코팅하였다. 이들 코팅층들의 두께 0.7∼1.0$\mu\textrm{m}$ 범위였으며 또한 거칠기(roughness)는 3∼4nm였다. 열처리된 HAp 코팅층은 나노크기의 결정들로 구성되어 있었으며, 반면 Ag가 함유된 복합코팅층의 경우 결정질과 비결정질이 혼재되어 있었다. 열처리 전 HAp 코팅층의 Ca/P비는 1.9였고, Ag의 함량이 증가함에 따라 비는 감소하는 경향을 나타내었다. 또한 Ag 함량이 증가함에 따라 HAp코팅층의 미소 경도는 감소하였다.