• Title/Summary/Keyword: Coating Thickness

Search Result 1,479, Processing Time 0.026 seconds

Properties of liquid crystal alignment layers exposued to ion-beam irradiation enemies (이온빔 에너지에 따른 액정배향막의 전기광학적 특성연구)

  • Oh, Byeong-Yun;Lee, Kang-Min;Park, Hong-Gyu;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.430-430
    • /
    • 2007
  • In general, polyimides (PIs) are used in liquid crystal displays (LCDs) as alignment layer of liquid crystals (LCs). Up to date, the rubbing alignment technique has been widely used to align liquid crystals on the PI surface, which is suitable for mass-production of LCDs because of its simple process and high productivity. However, this method has some disadvantages. Rubbed PI surfaces include the debris left by the cloth and the generation of electrostatic charges during rubbing process. Therefore, rubbing-free techniques for LC alignment are strongly required in LCD technology. In this experiment, PI was uniformly coated on indium-tin-oxide electrode substrates to form LC alignment layers using a spin-coating method and the PI layers were subsequently imidized at 433 K for 1 h. The thickness of the PI layer was set at 50 nm. The LC alignment layer surfaces were exposed to an $Ar^+$ ion-beam under various ion-beam energies. The antiparallel cells and twisted-nematic (TN) cells for the measurement of pretile angle and electro-optical characteristics were fabricated with the cell gap of 60 and $5\;{\mu}m$, respectively. The LC cells were filled with nematic LC (NLC, MJ001929, Merck) and were assembled. The NLC alignment capability on ion-beam-treated PI was observed using photomicroscope and the pretilt angle of the NLC was measured by the crystal-rotation method at room temperature. Voltage-transmittance (V-T) and response time characteristics of the ion-beam irradiated TN cell were measured by a LCD evaluation system.

  • PDF

Analysis of breaching behavior of levee according to coating thickness of new substance (신소재의 피복두께에 따른 제방의 붕괴 거동 분석)

  • Ko, Dong Woo;Kim, Sung Joong;Kang, Joon Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.480-480
    • /
    • 2018
  • 전 세계적으로 자연 친화, 하천생태계 보전, 친수하천 등을 조성하기 위한 대대적인 하천 정비사업이 활발히 진행 중에 있다. 최근 홍수로 인한 제방 붕괴에 대응하기 위한 제방의 안정화 및 개선을 위한 방법으로 기존의 시멘트와 같은 혼합물질을 사용하지 않고 환경 친화적이고 지속 가능한 대안에 대한 수요가 증가되고 있는 추세이며 현재 노후화 된 불안정 제방에 대한 보강대책을 수립해나가는 과정으로써 친환경 신소재를 활용하여 제방을 보호하는 연구가 수행되고 있다. 제방사면에 적용되는 신소재는 바이오폴리머를 활용한 재료로써 공동연구기관 카이스트에서 개발된 환경 친화적인 물질로 미생물에 의해 유도된 고인장 및 인체 무해성 등의 특성을 갖고 있으며 경제적 타당성인 측면에서 시멘트와 비교 분석 되어야 하고 실제 현장에서의 적용 가능성, 신뢰성 및 내구성 검토 등 성능을 보장하기 위한 지속적인 연구가 필요한 상황이다. 이에 본 안동하천실험센터에서는 중규모 제방을 직접 제작하여 수리모형실험을 통한 친환경 신소재 활용 제방의 안정성 및 성능 평가를 실시하였다. 수리실험 조건은 카이스트에서 제시된 레시피를 기반으로 먼저 분말형태의 바이이폴리머를 물과 희석하여 만들어진 바이오폴리머 용액을 흙과 혼합한 뒤 제방표면에 직접 미장작업을 수행하여 실험조건에 따라 일정한 두께(1cm, 3cm, 5cm)로 피복하였다. 이후 월류 붕괴 실험이 가능한 3 - 5일 정도의 양생기간을 거쳐 실험을 진행하였다. 실험결과는 다수의 고프로(GoPro) 및 비디오 카메라 등 다양한 영상장치를 이용하여 픽셀기반의 영상분석기법을 활용한 시간 흐름에 따른 제방 사면에서의 붕괴규모를 산정하여 신소재의 피복 두께에 따른 제체의 붕괴 거동 및 안정성을 평가하였으며, 또한 제방 파괴부에서의 흐름 상황 및 유속이 붕괴 발달에 미치는 영향을 분석하기 위하여 PIV 분석을 실시하였다. 이번 연구의 최종목표는 지속적인 예비실험을 수행하여 월류 및 침투, 파이핑 등 파괴 인자 별 신소재의 성능 개선 및 개발된 새로운 공법에 대한 효과 검토를 통한 최적안을 도출함으로써 향후 실규모 실험실증을 통한 신소재 시공 및 공법에 대한 현장적용 가능성 검증을 거쳐 최종적으로 신소재 제방 공법 설계 기술, 신소재 및 공법 표준안, 제방공법 안정성 평가 가이드라인 등을 제시하고자 하며, 이러한 실험데이터를 축적함으로써 실제 제방 붕괴 시 비상대처계획 수립에 필요한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

Evaluation of NOx Reduction Performance by Photocatalytic (TiO2) Coating of Cement Mortar Mixed with Zeolite and Activate Hwangtoh (제올라이트와 활성 황토를 혼입한 시멘트 모르타르의 광촉매(TiO2) 코팅에 따른 NOx 저감성능평가)

  • Park, Jang-Hyun;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.483-489
    • /
    • 2020
  • Particulate matter is divided into PM10 (particle diameter of 10 ㎛ or less) and PM2.5 (particle diameter of 2.5 ㎛ or less), which are approximately 1/5 of the thickness of the hair. Due to its effect on the human body, lung disease, arteriosclerosis and heart It is known as a carcinogen that causes various diseases such as diseases. It is known that the main cause of such fine dust is nitrogen dioxide (NOx), which is emitted from automobiles in about 57.3% of urban roadsides. Therefore, in this study, as part of the development of functional construction materials to reduce NOx generated from road transport pollutants, comparative evaluation of NOx reduction performance was conducted according to the replacement rate of cement mortar in which cement was replaced with a porous material. In addition, the NOx reduction performance of cement mortar according to the photocatalyst application method and the number of applications was compared an d evaluated. As a result of the experiment, when activated ocher was substituted by 30%, it showed a reduction effect of about 32.7%, showing the best reduction performance.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

Fabrication of Visible Light Transmittance-variable Smart Windows Using Phase Retardation Films (위상지연 필름을 이용한 가시광 투과율 가변형 스마트윈도우 제작)

  • Kim, Il-Gu;Yang, Ho-Chang;Park, Young-Min;Hong, Young Kyu;Lee, Seung Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.29-34
    • /
    • 2022
  • A fabrication process of smart windows with controllable visible light transmittance by using retardation films is proposed. The 𝛌/4-phase retardation films that can convert a linearly polarized light into circularly polarized light are achieved through photo-alignment layers and reactive mesogen (RM) coating process. Two sheets of the fabricated retardation films with different orientation angles induced to light transmission mode (45°/-45°) and light blocking mode (45°/45°) for visible wavelength. We evaluated retardation characteristics according to the thickness of the birefringent RM material and found out the optimal condition for the film with 𝚫n·d of 𝛌/4-phase. The proposed structure of the smart window exhibited the light blocking ratio improved by more than 20% in the visible wavelength (380 nm to 780 nm). Finally, it was confirmed that the feasibility of the window structure by applying to a prototype for a smart window with a size of 150 × 150 mm2.

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts (CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.99-104
    • /
    • 2024
  • In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.

Structural and Electrical Properties of (La0.7Sr0.3)(Mn1-xFex)O3 Thin Films Prepared by Sol-Gel Method for Thermistor Devices (서미스터 소자로의 응용을 위한 솔-젤법으로 제작한 (La0.7Sr0.3)(Mn1-xFex)O3 박막의 구조적, 전기적 특성)

  • Ji-Su Yuk;Sam-Haeng Yi;Myung-Gyu Lee; Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.164-168
    • /
    • 2024
  • (La0.7Sr0.3)(Mn1-xFex)O3 (LSMFO) (x = 0.03, 0.06, 0.09, 0.12) precursor solution are prepared by sol-gel method. LSMFO thin films are fabricated by the spin-coating method on Pt/Ti/SiO2/Si substrate, and the sintering temperature and time are 800℃ and 1 hr, respectively. The average thickness of the 6-times coated LSMFO films is about 181 to 190 nm and average grain size is about 18 to 20 nm. As the amount of Fe added in the LSMFO thin film increased, the resistivity decreased, and the TCR and B25/65-value increased. Electrical resistivity, TCR and B25/65-value of the (La0.7Sr0.3)(Mn0.88Fe0.12)O3 thin film are 0.0136 mΩ-cm, 0.358%/℃, and 328 K at room temperature, respectively. The resistivity properties of LSMFO thin films matched well with Mott's VRH model.

Investigation of Damage to Polyurethane Topcoat Based on De-icing Cycles (De-icing 횟수에 따른 폴리우레탄 탑코트의 손상 조사)

  • Donghyeon Lee;Joung-Man Park;Hyung Mi Lim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.204-208
    • /
    • 2024
  • De-icing/anti-icing fluid is essential for removing ice formation on aircraft. It chemically removes ice using organic solvents, which can cause damage to the topcoat surface in the process. In this study, glycol-based deicing/anti-icing fluid was used to remove ice, and the resulting damage to the topcoat was examined. USB microscope was used to observe the formation and growth of ice, while a confocal microscope was employed to observe the surface morphology after treatment with de-icing/anti-icing fluid. Additionally, coating thickness measurements and Fourier transform infrared (FT-IR) analysis were conducted to investigate the physical and chemical changes on the surface. The repeated application of de-icing/anti-icing fluid showed a reduction in the ice formation rate and an increase in the growth rate. Damage during the pressurization process and surface damage to the polyurethane topcoat caused by ethylene glycol were observed during the de-icing process. Although no chemical changes were detected, the analysis revealed that surface uniformity decreased, with physical damage such as cracks and undulations forming on the surface. It was confirmed that while de-icing/anti-icing fluid is effective in removing ice, it also causes surface damage.