• Title/Summary/Keyword: Coating Agent

Search Result 375, Processing Time 0.022 seconds

An Experimental Study on the Water Repellent Property of Mortar Applied Water Repellent Agent of Inorganic Polymer Type (무기질 폴리머계 흡수방지재를 도포한 모르터의 발수성능 평가에 관한 실험적 연구)

  • 이일형;엄덕준;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.33-37
    • /
    • 2004
  • Recently, Growing tendency for structure surface to use water repellent agent has increased steadily. But investigation of it's protection and durability property is not sufficient. Therefore, this paper shows the investigation about repellent property and micro structure's change in surface layer of mortar that is applied by water repellent agent. Water repellent property, absorption coefficient, air permeability, porosity and observation of micro construct was investigated according to water repellent agent type. The test results indicated that mortar applied water repellent agent appears tiny absorption coefficient, but air permeability is maintained. The reason is because silane solution is coating at capillary surface of a wall and minute pore structure is changeless.

  • PDF

Stability Improvement of Esomeprazole Magnesium Dihydrate Enteric-Coated Tablet by Adding Alkalizing Agents (에스오메프라졸 마그네슘 이수화물을 함유하는 장용성 제제의 안정성 개선)

  • Cho, Young Ho;Jeon, Hyo Bin;Lee, Jong-Hwa;Lee, Gye Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.108-116
    • /
    • 2017
  • Omeprazole, a benzimidazole derivative, suppresses gastric acid secretion by inhibiting $H^+/K^+$ ATPase in gastric parietals cells, and by reducing $H^+$ concentration. To improve stability of esomeprazole magnesium dihydrate (ESMD), enteric-coated preperation was composed of core tablet, subcoating and enteric coating layer. We were evaluated in vitro dissolution characteristics between test and reference ESMD preparation and stability. We could prepare enteric-coated formulation of ESMD by controlling disintegrating agent and coating ratio which could rapidly dissolved in neutral or alkali medium. The formulation D5 with crospovidone of 1.25% and coating ratio of 16.25% had a similar dissolution behavior compare to reference preparation. Difference factor ($f_1$) and similarity factor ($f_2$) were 0~15 and 50~100 and there was no significant difference in bioequivalence between formulations. The content and dissolution rate of formulation D5 were $96.54{\pm}0.21$ and $78.56{\pm}0.87%$ without change of color in accelerated condition ($40^{\circ}C$, RH 75%, high density polyethylene (HDPE) container) for 6 months. This study concluded that our enteric coated preparation of ESMD could be an useful method to improve stability of unstable drug without direct contact with coating material.

Bacterial Sporulation and germination of Biocontrol agent Bacilus subtilis YBL-7 (항진균성 길항세균 Bacillus subtilis YBL-7의 종자피막용 포자체의 생산과 발아조건)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.236-242
    • /
    • 1995
  • Biological control of soilborne plant pathogens by the addition of antagonistic microorganisms to the soil may offer a practical supplement or alternative to existing disease management strategies that depend heavily on chemical pesticides. Soil amendment with antagonistic microbes was non-effective because of high cost, low efficacy, and inconvenient usage on the treatment course. Therefore, seed coating formulation for the application of biological seed treatments has been being to apply successful disease suppression for many important crops. The objectives of this study were to investigate the optimal condition for the spore production of biocontrol agent Bacillus subtilis YBL-7 and the liquid coating formulation that contained a suspension of a proper aqueous binder, as well as a ground fine solid particulate material. The maximum yield has been obtained from 60 hrs-old culture at 30$\circ$C in spore forming (SF) medium containing 0.8% nutrient broth, 0.05% yeast extract, 10$^{-1}$ M MgCl$^{2}$, 10$^{-4}$ M MnCl$^{2}$, 10$^{-5}$ M dipicolinic acid, and pH 6.5. The optimal condition of dried spore preparation was achieved when cells of B. subtilis YBL-7 was heat-dried with 50$\circ$C for 2 hrs.

  • PDF

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating; (I) Synthesis of Zirconia Sol and Fabrication of Its Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구;(I) 지르코니아 졸의 합성 및 박막의 제조)

  • Kim, Byong-Ho;Hong, Kwon;Shin, Dong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1060-1068
    • /
    • 1994
  • Stable zirconia sol was prepared from zirconium butoxide Zr(OC4O9)4 as a precursor and ethylacetoacetate(EAcAc) or diethylene glycol(DEG) as a chelating agent under ambient agent under ambient atmosphere by Sol-Gel process. The sythesized sol was coated on 304 stainless steel substrate by dip coating, thereafter zirconia film could be obtained by heat-treatment at $600^{\circ}C$. The characteristics of coating film were determined by FT-IR, XRD, and ellipsometion peak represented Zr-O-Zr bonding of tetragonal phase was shown at 470cm-1. Crystallization of zirconia gel and film from amorphous state to tetragonal phase started at 40$0^{\circ}C$, and then transformed into monoclinic phase around $700^{\circ}C$. Zirconia film coated on 304 stainless steel substrate showed relatively low porosity of 16% when it was coated with 0.4M zirconia sol and thereafter heat-treated at 80$0^{\circ}C$ and the film was densified continuously up to 90$0^{\circ}C$. The zirconia film of 10 nm thick acted as a protective layer against oxidation up to $700^{\circ}C$.

  • PDF

Research on the Development of Inline Phosphate Coating Process Technology to Secure the Properties of Parts for Power Transmission Machinery (동력전달용 기계부품의 물성 확보를 위한 인라인 인산염 피막처리 공정기술개발)

  • Kim, Deok-Ho;Ku, Young-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.199-208
    • /
    • 2022
  • The steel wire or steel bar processing process applied to the manufacture of various bolts and power transmission shafts was improved by applying in-line phosphate film treatment technology. By applying a polymer lubricant for a non-reactive metal forming process and a non-reactive non-phosphorus lubricating coating agent, the film formation for each process time was comparatively analyzed and reviewed. Compared to the nine processes applied previously, the in-line phosphate film treatment technology applied with only two processes has been effectively improved in terms of reduction of treatment time, reduction of facility installation area, prevention of water pollution due to wastewater, and non-use of ozone-depleting substances. In addition, it was found that it can have an important effect on productivity improvement and price competitiveness from the simplification of quality control and process control as well as improvement of the working environment.

Evaluation of physical properties of Zn-Al metal spray coating according to concrete surface and treatment method (콘크리트 표면 처리 방법 및 용사면에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Yang, Hyun Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.59-60
    • /
    • 2022
  • When a metal sprayed film of several hundred ㎛ on the concrete surface is possible to 80 dB of shielding effect electromagnetic waves (ElectroMagnetic Pulse, EMP). Therefore, in this study, as a way to secure EMP shielding performance by applying a metal spray coating showing excellent EMP shielding performance to a concrete structure, the metal spray welding efficiency and thin film adhesion performance according to the concrete spray direction and surface treatment method were evaluated. Metal sprayed efficieny according to the metal spraying direction and method was confirmed that the difference was insignificant by applying the roughening agent. However, the method of strengthening the concrete surface and applying the sealing agent show maximum adhesion strength of 3.98 MPa compared to other methods, and it is judged that this method can be utilized for the metal spraying method for concrete EMP shielding.

  • PDF

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

Printability of coating layer with nano silica sol for inkjet printing high-end photo paper (나노 실리카 졸을 이용한 잉크젯 프린팅용 고품질 인쇄용지 도공층의 인쇄적성)

  • Kim, Hye-Jin;Nahm, Sahn;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.352-358
    • /
    • 2019
  • In recent years, printing paper with a function of information delivery and aesthetic value has attracted a great attention with increasing market demand for coated paper that is capable of high quality printing. The coated paper for inkjet printing with high-quality of photorealistic grades requires the coating layer with a good wettability and porous surface structure in order to improve the printability of ink. In this study, the coated paper was prepared using polyvinyl alcohol (PVA) and surface treated nano silica sol with silane coupling agent. It was confirmed that the coating layer with surface treated nano silica sol showed a uniform pore distribution and flat surface roughness. Glossiness of the prepared printing paper was similar to that of commercial high quality photo paper. Especially, the coated paper with surface treated nano silica sol showed improved printability with excellent roundness of the printed dot of ink. These results indicates that the coating layer with excellent wettability and uniform pore distribution can be formed by using the nano-silica particles with improved dispersibility through the surface treatment of the silane coupling agent.

Performance of Concrete in Aggressive Environment

  • Aguiar, Jose B.;Camoes, Aires;Moreira, Pedro M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Surface treatments act as a barrier between the environment and the concrete, preventing or retarding the entry of harmful substances and cutting off the transportation path into concrete. The effectiveness of a surface protection preventing the permeation depends on how close and strongly connected are the resin molecules. This work intends to contribute to a better understanding of the performance of protected concrete in chemically aggressive environments, by presenting results of ion diffusion and resistance to aggressive solutions of several hydrophobic agents and coatings used to protect concrete. Three different types of surface protections were tested: silicone hydrophobic agent, acrylic and epoxy coatings. The obtained results indicate that the overall performance of epoxy resin was better than the other selected types of protections.