• Title/Summary/Keyword: Coating Agent

Search Result 376, Processing Time 0.024 seconds

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

Preparation of Alumina Sol Coated BOPP Composites and Their Gas Permeation Characteristics (Alumina Sol을 코팅한 BOPP 복합체의 제조 및 기체 투과 특성)

  • Hong, Seong-Uk;Oh, Jae-Won;Ko, Young-Deok;Song, Ki-Chang
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Sol-gel process is relatively simple, easy to use, cheap to install, and results in thin coating layers with superior physical and gas barrier properties. Films coated by the sol-gel process can be used as insulating films or packaging films for foods, chemicals, drugs, and beverages, etc. In this study, alumina sol was synthesized from aluminum isopropoxide and silane coupling agent was added to make coating solutions. In addition, biaxially oriented polypropylene (BOPP) was coated using several alumina sol solutions and their oxygen permeabilities were measured. The experimental results indicate that in the best case, the oxygen permeability of coated film was reduced by 85% compared to that of pure BOPP.

Preparation and Dissolution Profiles of Controled Release Formulations Containing Tamsulosin Hydrochloride (염산 탐스로신을 함유하는 방출제어형 제제의 제조 및 용출거동)

  • Yun, Jae-Nam;Kim, Jeong-Soo;Kim, Dong-Woo;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.445-451
    • /
    • 2005
  • As a selective ${\alpha}_{1A}-adrenoreceptor$ antagonist, tamsulosin has been used clinically for urinary obstructed patients with benign prostatic hyperplasia. The single and multi-layered pellets containing tamsulosin hydrochloride were prepared in an effort to control the drug release, avoiding dose-dependent side effects of tamsulosin hydrochloride upon oral administration. The drug release from multi-layered pellets was substantially controlled, compared with single layered pellets. The drug release from coated pellets with single or multi layer was affected by the nature of coating agent, the percentage of coating level and the presence of hydrophilic material in coating layer. In conclusion, the controlled release oral delivery system using multi-layered pellet is very useful for tamsulosin hydrochloride, resulting in improvement of patient compliance and therapeutic drug levels for a longer period of time.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

A study on Zn corrosion resistance of WC spray coating sealed with carbon nanotube suspensions (탄소 나노튜브 혼합액으로 봉공처리된 텅스텐 카바이드 용사층의 아연 내부식성에 대한 연구)

  • Kim, Bong-Hun;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • An experimental study was conducted to investigate the effect of carbon nanotubes on the zinc corrosion resistance of sealing layer formed on the Tungsten Carbide spray coating. Using the nanotubes, a sealing agent in the form of solid-liquid suspensions was made and applied to the surface of spray coating. A series of experiments, consisted of three stages such as preparation of test piece, molten-pot immersion test, and evaluation of micro structure, were undertaken to demonstrate complicated interaction existing between zinc ions and sealing layer containing the nanotubes. Experimental results showed newly developed sealing layer were less susceptible to corrosion and thus coated layer was well protected even in the case of 10 days exposure. Comparison of the micro structure after molten pot test also indicated that carbon nanotubes still remained in the matrix and organized more reliable frame work constituted with boron nitride and chromium compound. It was revealed that carbon nanotubes in the sealing layer played positive role to enhance zinc corrosion resistance in the perspective of both fibrous structure and inherent chemical stability.

Teflon coating of fabric filters for enhancement of high temperature durability (섬유상 여과필터의 고온 내구성 향상을 위한 테프론 코팅 연구)

  • Kim, Eun-Joo;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.232-239
    • /
    • 2011
  • Fabric fibrous filter has been used in various industrial applications owing to the low cost and wide generality. However, the basic properties of fabric materials often limit the practical utilization including hot gas cleaning. This study attempts to find new coatings of porous fibrous filter media in order to overcome its insufficient thermal resistance and durability. Teflon was one of the plausible chemicals to supplement the vulnerability against frequent external thermal impacts. A foaming agent composed of Teflon and some organic additives was tentatively coated on the glass fiber mat. The present test Teflon foam coated filter was fount to be useful for hot gas cleaning, up to $250^{\circ}C$-$300^{\circ}C$. Close examination using XPS(X-ray Photoelectron Spectroscopy) and Contact angle proved the binding interactions between carbon and fluorine, which implies coating stability. The PTFE/Glass foam coated filter consisted of more than 95% (C-F)n bond, and showed super-hydrophobic with good-oleophobic characteristics. The contact angle of liquid droplets on the filter surface enabled to find the filter wet-ability against liquid water or oil.

Improvement of Pot Life in the Epoxy Resin-based Adhesive Formulation by Size Control and Coating of Curing Accelerator Powders (경화촉매 분말의 입도조절 및 표면코팅에 의한 에폭시 레진 기반 혼합조성의 상온 보관특성 개선)

  • Lee, Jun-Sik;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • To increase pot life in the formulation mixed with bisphenol F epoxy resin, anhydride-based curing agent, and imidazole-based curing accelerator powders as a paste material for high-speed RFID chip bonding, size variation of the imidazole-based powders and a coating method of the powders were adopted in this study. In experiment with regard to the size variation, the pot life was not outstandingly increased. Through the idea using the coating method, however, the pot life was increased up to 4.25 times in comparison with the addition of initial imidazole-based powders. Consequently, successive bonding of RFID chip could be performed with very short time of 5sec using the suggested formulation having improved pot life.

An Investigation on the Patination of Copper in Acidic Copper Sulfate Solution (산성황산동 용액 내에서 동판위에 녹청 형성에 관한 기초적 조사)

  • 윤승열
    • Journal of the Korean institute of surface engineering
    • /
    • v.5 no.3
    • /
    • pp.77-85
    • /
    • 1972
  • A method of preparation of synthetic ignorgaic coating on copper (patina) has been presented . An Eh--pH diagram was constructed for the present Cu-H2O-SO$_4$ system using the most recently available thermodynamic data. In the path of the patination at room temperature the general behaviour of copper in acidic copper sulfate solutions with potassium chlorate as an oxidizing agent appeared to follow those predictable in this Eh-pH diagram. In the presence 0.05 molar cupric sulfate at a temperature of about 28$^{\circ}C$ a green brochantite (CuSO$_4$$.$3Cu(OH)$_2$) layer was formed on copper sheet in 20 days. In a solution having an initial pH of 3.5 the development of a brochantite coating has been observed to take place in two stages. In the first, a layer of cuprous oxide formed on the copper at a relatively rapid rate. In the ensuing step the outer layer of cuptrite was oxidized at much slower rate to form brochantite. The syntetic coatings appeared to consist of crystal-lites of brochanitite growing perpendicular to the cuprose oxide surface. The outer tips of the -crystallites were reasily broken off and gave to the layer a rather chalky character. Underneath, at the brochantite Cu$_2$O interface, however, the green layers were firmely attached. The effect of reagent concentration , solution agitation , and moderate temperature increase were investigated to improve the quality of coating. So also in a qualitative way were the effect of light.

  • PDF

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.