• Title/Summary/Keyword: Coated graphite rod

Search Result 3, Processing Time 0.015 seconds

IRRADIATION DEVICE FOR IRRADIATION TESTING OF COATED PARTICLE FUEL AT HANARO

  • Kim, Bong Goo;Park, Sung Jae;Hong, Sung Taek;Lee, Byung Chul;Jeong, Kyung-Chai;Kim, Yeon-Ku;Kim, Woong Ki;Lee, Young Woo;Cho, Moon Sung;Kim, Yong Wan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.941-950
    • /
    • 2013
  • The Korean Nuclear-Hydrogen Technology Development (NHTD) Plan will be performing irradiation testing of coated particle fuel at HANARO to support the development of VHTR in Korea. This testing will be carried out to demonstrate and qualify TRISO-coated particle fuel for use in VHTR. The testing will be irradiated in an inert gas atmosphere without on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The irradiation device contains two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The irradiation device is being loaded and irradiated into the OR5 hole of the in HANARO core from August 2013. The device will be operated for about 150 effective full-power days at a peak temperature of about $1030^{\circ}C$ in BOC (Beginning of Cycle) during irradiation testing. After a peak burn-up of about 4 atomic percentage and a peak fast neutron fluence of about $1.7{\times}10^{21}\;n/cm^2$, PIE (Post-Irradiation Examination) of the irradiated coated particle fuel will be performed at IMEF (Irradiated Material Examination Facility). This paper reviews the design of test rod and irradiation device for coated particle fuel, and discusses the technical results for irradiation testing at HANARO.

Construction and Optimization of Selective Membrane Electrodes for Determination of Doxepin Hydrochloride in Pharmaceutical Preparations and Biological Fluids (약의 조제와 생물학적 유체에서 독스핀 하이드로클로라이드의 확인을 위한 선택적 막 전극의 구성과 최적화)

  • El-Tohamy, Maha;Razeq, Sawsan;El-Maamly, Magda;Shalaby, Abdalla
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.198-207
    • /
    • 2010
  • The construction and performance characteristics of doxepin hydrochloride selective electrodes were developed. Three types of electrodes: plastic membrane I, coated wire II, and coated graphite rod III were constructed based on the incorporation of doxepin hydrochloride with ammonium reineckate. The influence of membrane composition, kind of plasticizer, pH of the test solution, soaking time, and foreign ions on the electrodes was investigated. The electrodes showed a Nernstain response with a mean slope of 57.41 ${\pm}$ 0.5, 56.22 ${\pm}$ 0.2 and 52.88 ${\pm}$ 0.7 mV at $25^{\circ}C$ for electrode I, II and III respectively, over Doxepin hydrochloride concentration range from $1{\times}10^{-2}-1{\times}10^{-6}M$, $5{\tims}10^{-2}-1{\times}10^{-6}M$ and $1{\times}10^{-3}-5{\times}10^{-6}M$, and with a detection limit $5.0{\times}10^{-7}M$, $6.3{\times}10^{-7}M$ and $2.5{\times}10^{-6}M$ for electrode I, II and III respectively. The constructed electrodes gave average selective precise and usable within the pH range 3 - 7. Interferences from common cations, alkaloids, sugars, amino acids and drug excipients were reported. The results obtained by the proposed electrodes were also applied successfully to the determination of the drug in pharmaceutical preparations and biological fluids.

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.