• Title/Summary/Keyword: Coated foam

Search Result 55, Processing Time 0.021 seconds

A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam (Metal foam을 사용한 고분자 전해질 연료전지 성능 연구)

  • KIM, MYO-EUN;KIM, CHANG-SOO;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

Effect of Nickel Foam Current Collector on the Supercapacitive Properties of Cobalt Oxide Electrode (코발트 산화물 전극의 수퍼커페시터 성질에 미치는 니켈 폼 집전체 효과)

  • Yoon, Yu-Il;Kim, Kwang-Man;Ko, Jang-Myoun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.368-373
    • /
    • 2008
  • An electrode for supercapacitor using 3-dimensional porous nickel foam as a current collector and cobalt oxide as an active material was prepared and characterized in terms of morphology observation, crystalline property analysis, and the investigation of electrochemical property. The electrode surface showed that the cobalt oxide was homogeneously coated as the crystalline phase of $Co_3O_4$. Cyclic voltammetry for the $Co_3O_4$/nickel foam electrode exhibited higher specific capacitance values (445 F/g at 10 mV/s and 350 F/g at 200 mV/s) and excellent capacitance retention ratio (99% after $10^4$ cycles). It was proved that the nickel foam substrate played the roles in reducing the interfacial resistance with cobalt oxide and in improving the electrode density by embedding greater amount of cobalt oxide within it.

Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam (금속폼을 이용한 Partial DPF의 설계 및 전산유체해석 연구)

  • Yoon, Cheon-Seog;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • DPF(Diesel Particulate Filter)s have been used to reduce the most of PM(particulate matters) from the exhaust emissions of diesel engine vehicles. Metal foam is one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. It can be fabricated with various pore sizes and struct thickness and coated with catalytic wash-coats with low cost. In order to design metal foam filter and analyze the flow phenomena, pressure drop and filtration experiment are carried out. Partial DPF which has PM reduction efficiency of more than 50 % is designed in this paper. Also, CFD analysis are performed for different configurations of clean filters in terms of pressure drop, uniformity index, and velocity magnitude at face of filter. Filter thickness and the gap between front and rear filters are optimized and recommended for manufacturing purpose.

Characteristics of NOx Reduction Using V2O5 - TiO2Catalyst Coated on Ceramic Foam Filters (V2O5 - TiO2 촉매 담지된 세라믹 폼 필터를 이용한 NOx 제거 특성)

  • Han Yoseop;Kim Hyunjung;Park Jaikoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.773-781
    • /
    • 2004
  • Ceramic foams prepared from silica -clay were coated with TiO$_2$ and V$_2$O$_{5}$ catalysts for selective catalytic reduction of NOx with NH$_3$. The effects of V$_2$O$_{5}$ loading, reaction temperature, space velocity, and oxygen content on NOx reduction with NH$_3$ were mainly investigated. Also, the NOx reduction characteristics of V$_2$O$_{5}$ and V$_2$O$_{5}$ -TiO$_2$ filters were compared when sulfur dioxide exists. From the results, the optimal NOx reduction with the maximum reduction efficiency of 91 % could be performed under the condition with V$_2$O$_{5}$ loading 6.0 wt. %, reaction temperature 35$0^{\circ}C$, space velocity 6,000h$^{-1}$ , and oxygen content 5%. And, the V$_2$O$_{5}$ -TiO$_2$ filters have shown higher NOx reduction efficiency and acid resistance against sulfur dioxide than the V$_2$O$_{5}$ filters.

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Lee, Jin-Gyu;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.267-273
    • /
    • 2012
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber-the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam-was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

Solar CO2-Reforming of Methane Using a Double-Layer Absorber (더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응)

  • Kim, Dong-Yeon;Shin, Il-Yoong;Lee, Ju-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.80-86
    • /
    • 2011
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber - the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam - was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

Fabrication of Ni-Cr-Al Metal Foam-Supported Catalysts for the Steam Methane Reforming (SMR), and its Mechanical Stability and Hydrogen Yield Efficiency (수증기 메탄 개질 반응을 이용한 수소 생산용 Ni-Cr-Al 다공체 지지 촉매의 제조, 기계적 안정성 및 수소 환원 효율)

  • Kim, Kyu-Sik;Kang, Tae-Hoon;Kong, Man Sik;Park, Man-Ho;Yun, Jung-Yeul;Ahn, Ji Hye;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • Ni-Cr-Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol-gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni-Cr-Al foam without cracks or spallation. The measured compressive yield strengths are 2-3 MPa at room temperature and 1.5-2.2 MPa at 750℃ regardless of sample size. The specimens exhibit a weight loss of up to 9-10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.

The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process (슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향)

  • Choi, Jin Ho;Jeong, Eun-Mi;Park, Dahee;Yang, Sangsun;Hahn, Yoo-Dong;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Fabrication of Fe Foam using Slurry Coating Process (슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구)

  • Yun, Jung-Yeul;Park, Dahee;Yang, Sangsun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 2017
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open pores which are penetrable pores are necessary for industrial applications such as in high temperature filters and as support for catalysts. In this study, Fe foam with greater than 90% porosity and 2-mm pore size was successfully fabricated using a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foam samples with different pore sizes and porosity. First, the slurry was prepared through the uniform mixing of powders, distilled water, and polyvinyl alcohol(PVA). The amount of slurry coated with the PU foam increased with increasing $Fe_2O_3$ mixing powder ratio, but the shrinkage and porosity of the Fe foams decreased, respectively, with increasing $Fe_2O_3$ mixing powder ratio.

A Study on the NOx Reduction According to the Space Velocity Variation and Binder Content of Metal foam SCR Catalyst for Cogeneration Power Plant Application (열병합발전소 적용을 위한 Metal foam SCR촉매의 공간속도와 바인더 함량에 따른 NOx 저감에 관한 연구)

  • Na, Woo-Jin;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.153-164
    • /
    • 2019
  • To develop a high performance SCR catalyst which has better specific surface area, lightness of weight and fast temperature response than those of existing commercial SCR catalyst, metal foam type SCR catalysts were prepared by washcoating with vanadium, tungsten and binder. The de-NOx performance test of the prepared catalysts was carried out on atmospheric micro-test unit at lab. scale according to space velocity variation and temperature change, and the characteristics of them were analyzed by Porosimeter, SEM(scanning electron microscope), EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma) and Stereomicroscope. The NOx reduction performance decreased as the space velocity increased and was found to be the best at 3.5 wt.% contents of the vanadium and tungsten. It was found that the larger amount of binder was added, the worse the NOx reduction performance was, which was considered to be that the number of active sites of the prepared catalyst surface was occupied by the binder. We found that the amount of binder to be added to prepare the catalyst should be properly controlled by the condition of coated catalyt surface.