• Title/Summary/Keyword: Coastline Channel

Search Result 14, Processing Time 0.022 seconds

Case Study for Ship Ad-hoc Networks under a Maritime Channel Model in Coastline Areas

  • Su, Xin;Yu, HaiFeng;Chang, KyungHi;Kim, Seung-Geun;Lim, Yong-Kon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4002-4014
    • /
    • 2015
  • ITU-R M.1842-1, as a well-known specification dedicated to maritime mobile applications, has standardized wireless transmission protocols according to the particular characteristics of a maritime communications scenario. A time division multiple access (TDMA) frame structure, along with modulation schemes to achieve a high data rate, has been described clearly in ITU-R M.1842-1. However, several specification items are still under "to be decided" status, which brings ambiguity to research works. In addition, the current version of ITU-R M.1842-1 is focused mainly on maritime transmissions in open-sea areas, where the cyclic prefix (CP) is set to zero and only 16-QAM is used in the multi-carrier (MC) system. System performance might be dramatically degraded in coastline areas due to the inter-symbol interference (ISI) caused by selective fading. This is because there is a higher probability that the signal will be reflected by obstacles in coastline areas. In this paper, we introduce the transmission resource block (TRB) dedicated to ITU-R M.1842-1 for a ship ad-hoc network (SANET), where the pilot pattern of TRB is based on the terrestrial trunked radio (TETRA). After that, we evaluated SANET performance under the maritime channel model in a coastline area. In order to avoid noise amplification and to overcome the ISI caused by selective fading, several strategies are suggested and compared in the channel estimation and equalization procedures, where the link-level simulation results finally validate our proposals.

Analysis on MIMO Transmit Diversity Techniques for Ship Ad-hoc Network under a Maritime Channel Model in Coastline Areas

  • Ahmad, Ishtiaq;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.383-385
    • /
    • 2017
  • For the purpose of providing high data rate real-time services, radio transmission technologies for ship ad-hoc network based on the Recommendation ITU-R 1842-1 are designed. In order to increase the link throughput of real-time services, in this paper, we investigate the performance of the SANET with the spatial transmit diversity techniques are employed. Based on the analysis of the packet error rate and throughput, we select the efficient multiple antenna schemes for SANET to improve the link reliability.

Analysis of Numerical Model Wave Predictions for Coastal Waters at Gunsan-Janghang Harbor Entrance

  • Lee Joong-Woo;Lee Hak-Seung;Lee Hoon;Jeon Min-Su;Kim Kang-Min
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.627-634
    • /
    • 2005
  • Gunsan-Janghang Harbor is located at the mouth of Gum River, on the central west coast of Korea The harbor and coastal boundaries are protected from the effects of the open ocean by natural coastal islands and shoals due to depositions from the river, and two breakwaters. The navigation channel commences at the gap formed by the outer breakwater and extends through a bay via a long channel formed by an isolated jetty. For better understanding and analysis of wave transformation process where a wide coastline changes appear due to on-going reclamation works, we applied the spectral wave model including wind effect to the related site, together with the energy balance models. This paper summarizes comparisons of coastal responses predicted by several numerical wave predictions obtained at the coastal waters near Gunsan-Janghang Harbor. Field and numerical model investigations were initially conducted for the original navigation channel management project. We hope to contribute from this study that coastal engineers are able to use safety the numerical models in the area of port and navigational channel design.

Modeling of Suspended Sediment Transport Using Deep Neural Networks (심층 신경망 기법을 통한 부유사 이동 모델링)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Kyu-Sun;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.83-91
    • /
    • 2018
  • Land reclamation, coastal construction, coastline extension and port construction, all of which involve dredging, are increasingly required to meet the growing economic and societal demands in the coastal zone. During the land reclamation, a portion of landfills are lost from the desired location due to a variety of causes, and therefore prediction of sediment transport is very important for economical and efficient land reclamation management. In this study, laboratory disposal tests were performed using an open channel, and suspended sediment transport was analyzed according to flow velocity and grain size. The relationships between the average and standard deviation of the deposition distance and the flow velocity were almost linear, and the relationships between the average and standard deviation of deposition distance and the grain size were found to have high non-linearity in the form of power law. The deposition distribution of sediments was demonstrated to have log-normal distributions regardless of the flow velocity. Based on the experimental results, modeling of suspended sediment transport was performed using deep neural network, one of deep learning techniques, and the deposition distribution was reproduced through log-normal distribution.

Hydraulic Experiment on the Effects of Beach Erosion Prevention with Flexible Coastal Vegetation (연성 식생모형에 의한 해빈침식방지 특성에 관한 실험적 연구)

  • Lee, Seong-Dae;Park, Jung-Chul;Hong, Chang-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-37
    • /
    • 2009
  • Coastal vegetation consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of currents and waves and sediment stabilization are often listed among these services. From this point of view, artificial seaweed is an effective method of controlling sea bed sediment and stabilization without damaging the landscape or the stability of the coastline. A series of hydraulic experiments were performed in a wave channel with regular and irregular waves to examine the effect of artificial seaweed in relation to scouring and beach erosion prevention. Based on the results of these experiments, the coastal vegetation model is efficient against scouring and beach erosion.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

On the Characteristics of Hydrodynamic Forces in a Restricted Water (제한수역에서의 동유체력에 대한 고찰)

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 1992
  • A study has been made on the hydrodynamic forces on and the motion response of a sliding block in a bay within the framework of linear potential theory. To simplify the problem, following assumptions are made : The configuration of the bay is a long channel with narrow width, constant depth and straight coastline. Incident waves are long compared to the depth. We applied matched asymptotic expansion techniques. The flued domain is subdivided into three regions ; ocean, bay entrance, bay regions. Boundary-vague problems are solved first in each region. Then unknown coefficients are determined by matching individual solutions at the intermediate region between two neighboring legions. It is found that the motion of the block is greatly amplified at the resonant frequencies, in particular at the quarter wavelength mode. We examined the mechanism of negative added mass, which results from the localized hydrodynamic resonance.

  • PDF

Simulation of Mobile-bed disturbance due to Large scale Wave (댐 붕괴에 의한 토양 교란 시뮬레이션)

  • Kim, Kyung-Sung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.210-211
    • /
    • 2018
  • In general, the dam break problem is demonstrated to simulate open-channel disturbance due to large violent waves. These days, the large violent waves at shore and coastline can be seen frequently such like tsunami. The conventional computational fluid dynamics program based on Grid system, can be used to simulate this problem with large deformation of free surface in the restricted condition due to its limitation. The particle method based on fully Lagrangian approach is able to simulate large deformation of free surface by tracking each particles. In this study, the simulation of disturbance of mobile-bed due to large violent waves was investigated by using particle method.

  • PDF

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Recent Morphological Changes off the Shoreface of Jinwoodo and Sinjado in the Nakdong River Estuary: 2007-2012 (낙동강 하구역 진우도와 신자도 전면의 최근 지형 변화: 2007년-2012년)

  • Park, Jinku;Khim, Boo-Keun;Lee, Hee Jun;Lee, Sang Ryong
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.87-101
    • /
    • 2014
  • Recently, more attention has been paid to the geomorphological changes in the Nakdong River Estuary, because those changes are caused by artificial activities including weirs, reclamation and construction. In order to analyze quantitatively the recent geomorphological variability in the Nakdong River Estuary, we surveyed the depth and elevation of submarine topography near Jinwoodo and Sinjado from March 2007 to February 2012. A statistical method (based on Digital Shoreline Analysis System) and an Empirical Orthogonal Functions method were used to evaluate the morphological changes. According to the statistical variables (DCE, NDC, EPR, LRR), the highest amount and rate of accumulation were recorded around the Gadeokdo whereas the greatest amount of erosion appeared around the coast off the eastern part of Sinjado. In particular, a dynamic variation of morphology was clearly observed in the vicinity of the sub-tidal channel located between Jinwoodo and Sinjado, which seems to be attributable to channel migration. As a result of the EOF method, the first mode (48.7%) is most closely related to the pattern of morphological variability that might be associated with the westerly movement of sediment by longshore current. The spatial variability of the second mode (16.6%) was high in the shoreface of Sinjado, showing a 4-year periodicity of temporal variability. The strong correlation (coefficient 0.73) between the time coefficient and suspended sediment discharge from Nakdong River emphasizes the role of sediment discharge to deposition in this area. The spatial variability of the third mode (11.3%) was distributed mainly around the coast off the eastern part of Sinjado, which is related to the movement of the coastline of Sinjado. Based on the last 5 year's data, our results suggest that the study area is characterized on the whole by a depositional pattern, but the extent of sedimentation is different locally.