• Title/Summary/Keyword: Coastal vegetation

Search Result 216, Processing Time 0.024 seconds

Characteristics of the Vegetation in the Coastal Dunes near the Swimming Beaches on the East Sea Coast, South Korea (동해안 해수욕장 주변의 해안사구 식생 특성)

  • Cho, Woo;Song, Hong-Seon;Hong, Sung-Chul;Choi, Deog-Cheon
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.6
    • /
    • pp.499-505
    • /
    • 2009
  • This study was carried out to investigate and evaluate the vegetations in the coastal dunes in the vicinity of swimming beaches on the East Sea, South Korea, and the vegetations that were investigated are as follows: Carex pumila community, Cynodon dactylon community, Zoysia macrostachya community, Rosa rugosa community, Vitex rotundifolia community and Carex kobomugi typical community. Some of these vegetations, such as Carex kobomugi, Calystegia soldanella, Ixeris repens, Elymus mollis, Lathyrus japonica, and Glehnia littoralis were found to be differential species which belongs to Caricion kobomugi of Glehnietea littoralis. It was also discovered that Vitex rotundifolia community was the most heterogeneous among vegetation communities of the coastal dunes surrounding swimming beaches, and Zoysia macrostachya community was most closely linked to the typical coastal dune vegetation community. Finally, Rosa rugosa community and Vitex rotundifolia community seemed to have formed near the hinterland of coastal dunes and swimming beaches respectively because of certain unnatural disturbances such as construction of buildings and facilities or natural disasters.

Ecological Characteristic and Vegetation Structure of Pinus thunbergii Community in Coastal Forest of Busan Metropolitan City, Korea (부산광역시 해안림 곰솔군락의 식생구조 및 생태적 특성)

  • Shin, Hae-Seon;Lee, Sang-Cheol;Choi, Song-Hyun;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.539-551
    • /
    • 2019
  • The purpose of this study is to understand the vegetation structure and ecological characteristics of the coastal forest Pinus thunbergii community in Busan Metropolitan City (BMC) and to establish reference information for the management of the coastal forest in BMC in the future. We set up 97 plots with an area of $100m^2$ each for the analysis and investigation of the vegetation characteristics. The analysis using the TWINSPAN and DCA techniques found seven community groups: Pinus thunbergii-Quercus aliena community, Pinus thunbergii-Eurya japonica(1) community, Pinus thunbergii-Eurya japonica(2) community, Pinus thunbergii-Quercus serrata community, Pinus thunbergii-Camellia japonica(1) community, Pinus thunbergii-Camellia japonica(2) community, and Pinus thunbergii-Eurya japonica-Camellia japonica community. According to the analysis of vegetation structure, Pinus thunbergii was a main dominant species at the canopy layer in all sites while Eurya japonica and Camellia japonica were dominant species at the understory layer. Pinus thunbergii-Quercus serrata community is predicted in the forest succession because of the competition between Pinus thunbergii and Quercus serrata in the canopy layer and the understory layer. As such, it is necessary to observe changes by continually monitoring this community. Tree species with strong salinity tolerance, including Pinus thunbergii, have formed community groups because of the environmental characteristics of coastal forests, strong with salinity tolerance species are forming community groups. Therefore, all community groups except for the Pinus thunbergii-Quercus serrata community will maintain the current vegetation structure unless drastic environmental changes occur.

Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns (식생생장 영향을 고려한 하도변화에 대한 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyeong;Woo, Hyo Seop
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • In this study, the numerical simulation regarding the process and characteristics of topography change due to the vegetation recruitment and growth was carried out by adding the vegetation growth model to two-dimensional flow and sediment transport models. The vegetation introduction and recruitment on the condition for developing an alternate bar reduced the bar migration. The vegetated area and channel width changes were more significantly influenced by changes in upstream discharge rather than the duration of low flow. When the upstream discharge decreased, the vegetation area increased and the channel width decreased. The vegetation introduction and recruitment on the condition for developing a braided channel significantly influenced the characteristics of topography changes. In the braided channel, vegetation reduced the braided index, and when the upstream discharge decreased significantly, the channel topography was changed from the braided channel to the single channel. The vegetation area decreased as the upstream discharge increased. The channel width decreased significantly after the vegetation was introduced and it also decreased as the upstream discharge decreased. It was confirmed through the numerical simulation that a decrease in flood discharge accelerated the vegetation introduction and recruitment in the channel and this allowed to confirm its influence on the characteristics of topography changes qualitatively.

A Study on Wind-drift Sand Deposition by Vegetation and Coastal Debris using a Wind Tunnel Test (식생 및 해안표착물에 의한 비사 퇴적 풍동실험 연구)

  • Je, Young Jun;Jeon, Yong Ho;Yoon, Han Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The correlation and interaction mechanisms between marine debris and the vegetation zone were studied on the Jinu-do natural beach of the Nakdong river estuary. Laboratory wind tunnel experiments were carried out under the wind-field and bottom-sand conditions using wind tunnel test equipment to investigate the sedimentation characteristics of wind-drift sand deposition around marine debris and the vegetation zone. The major environmental factors/loads considered in this study were the motion of sand by wind on the beach, deposition of marine debris, and change in the vegetation zone/line. When the marine debris was installed in the wind tunnel, deposition at the front of the structure appeared first by wind action, and then deposition developed from behind at 70% of the front ground level. In contrast, in the case of vegetation, the deposition phenomenon appeared first from behind the vegetation zone/line, and was 60% higher than the front. When the height of the debris and vegetation was the same, the required experimental time to bury the vegetation completely was about twice that of the marine debris.

Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer (접지층에서 대기난류의 역할과 에너지 평형)

  • Kwon, Byung-Hyuk;Kim, Geun-Hoi;Kim, Kwang-Ho;Kang, Dong-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • Heat energy exchange is very important processes in the coastal wetland ecosystems. We observed and analyzed the net radiation flux, the sensible heat flux, the latent heat flux and the soil heat flux, which are balanced in the heat energy balance, over a reclaimed land covered with reeds at Goheung, Jeonllanamdo where is horizontally plane. The atmospheric turbulence had been measured in order to estimate the heat transfer during 5 intensive observation periods (IOPs). It was considered that the soil consists of water, fine particles, and vegetation canopy that changes color and density according to the season. We examined the characteristics of the heat flux and the vegetation effect on the air temperature control. It was noted that the heat was transported mainly by latent heat flux in the summer season and the vegetation canopy decreased the daily temperature range due to the heat storage. The air temperature was lower at the IOPs site than near urban area. This showed that the coastal wetland covered with the vegetation control the thermal environment.

  • PDF

Detection of Laver Aquaculture Site of Using Multi-Spectral Remotely Sensed Data (다중분광 위성자료를 이용한 김 양식어장 탐지)

  • Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.127-134
    • /
    • 2005
  • Recently, aquaculture farm sites have been increased with demand of the expensive fish species and sea food like as seaweed, laver and oyster. Therefore coastal water quality have been deteriorated by organic contamination from marine aquaculture farm sites. For protecting of coastal environment, we need to control the location of aquaculture sites. The purpose of this study is to detect the laver aquaculture sites using multispectral remotely sensed data with autodetection algorithm. In order to detect the aquaculture sites, density slice and contour and vegetation index methods were applied with SPOT and IKONOS data of Shinan area. The marine aquaculture farm sites were extracted by density slice and contour methods with one band digital number(DN) carrying 65% accuracy. However, vegetation index algorithm carried out 75% accuracy using near-infra red and red bands. Extraction of the laver aquaculture site using remotely sensed data will provide the efficient digital map for coastal water management strategies and red tide GIS management system.

The Structure and Ecological Characteristics of Coastal Forest in Busan Metropolitan City (부산광역시 해안림의 구조와 생태적 특성)

  • Kim, Seok-Hwan;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • To investigate the coastal forest structure and its ecological characteristics in Busan, four typical sites, Taejongdae, Molundae, Amnam Park, and Igidae, were selected and surveyed. These sites are famous coastal areas in Busan. According to the analysis of vegetation structure, Pinus thunbergii was a dominant species at the canopy layer in all sites. But at the understory layer, Eurya japonica in Taejongdae and Molundae, Ficus erecta in Igidae and Eurya japonica and Prunus sargentii in Amnam Park were dominant species.

Turbulence of the Coastal Atmospheric Surface Layer and Structure of the Coastal Atmospheric Boundary Layer (해안 대기 표층의 난류와 해안 대기 경계층의 구조)

  • Kwon, Byung-Hyuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.3
    • /
    • pp.404-412
    • /
    • 2005
  • The surface energy budget depends on many factors, such as the type of surface, the soil moisture and the vegetation canopy, the geographical location, daily, monthly and seasonal variations, and weather conditions. In the coastal region, the surface is not homogeneous at various scales for instance water, sand, mud, tall grass, and crops. The energy balance over the vegetation canopy was analyzed with the optical energy balance measuring system. The latent heat flux was more intensive than the sensible heat flux. The sensible heat flux was very small in summer due to the canopy effect and higher in spring and autumn. In summer the development of the atmospheric boundary depended on rather the vertical shear of wind than the sensible heat flux.

Numerical Experiment of Wave Attenuation considering Behavior of Vegetation Zone (식생대의 거동을 고려한 파랑감쇠의 수치실험)

  • Jeong, Yeon Myeong;Hur, Dong Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • In this study, the two-way coupled analysis method of LES-WASS-2D and DEM has been newly developed to review numerically wave attenuation due to behavior of vegetation zone could not yet applied in numerical analysis. To verify the applicability, two-way coupled analysis method is analyzed comparing to the experimental result about characteristics of wave attenuation using vegetation. Numerically analyzed behavior and characteristics of wave attenuation according to height length, distribution length, spacing of vegetation zone and incident wave conditions. It was confirmed to be effective of 3~4% wave attenuation were increased height length and distribution length, narrowed spacing of vegetation. Finally, this study is applicable to behavior and wave attenuation prediction of vegetation zone.

Simulation of Atmospheric CO2 Over Coastal Basin Urban Areas Using Meteorology-Vegetation Model (기상-식생 모델을 이용한 연안 분지 도시 지역의 대기 중 CO2 시뮬레이션)

  • Park, Changhyoun;Lee, Hwa Woon
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.729-739
    • /
    • 2017
  • The Weather Research and Forecasting (WRF) model and Vegetation Photosynthesis and Respiration Model (VPRM) were coupled to simulate atmospheric $CO_2$ concentrations. The performance of the WRF-VPRM to simulate regional scale $CO_2$ concentration was estimated over coastal basin areas. Either Hestia 2011(HST) or Vulcan 2002(VUL) anthropogenic $CO_2$ emission data were used in two numerical experiments for the study regions. Simulated meteorological variables were validated with ground and background $CO_2$ measurement data, and the results show that the model captured temporal variations of $CO_2$ concentration on a daily basis. $CO_2$ directional analysis revealed that the dominant $CO_2$ emission sources are located S and SW. The simulated Net Ecosystem Exchange (NEE) agreed relatively well with measured $CO_2$ fluxes at each vegetation class site, showing approximately 40% at max improvement at shrub areas.