• Title/Summary/Keyword: Coastal disasters

Search Result 119, Processing Time 0.026 seconds

A Study on Assessing Disaster Response Capacity for Coastal Residents (연안거주민에 대한 재해대응능력 평가 연구)

  • Kang, Tae-Soon;Lee, Seung-Rok;Lee, Jong-Sup;Kim, Jongkyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.979-990
    • /
    • 2014
  • Recently the frequency of coastal disasters caused by global warming is increasing and the damage is becoming greater. Therefore, the Korean government is establishing various policies and measures to minimize damage. For disaster prevention, this study will evaluate the disaster response capacity of each local resident(Eup/Myeun/Dong) in coastal areas through the survey. The purpose of this study is to quantitatively understand the disaster response capacity and analyze spatial autocorrelation between hot spots(vulnerable area) and cold spots. Thus this study was conducted a survey of 311 towns(Eup/Myeun/Dong) about the disaster response capacity of coastal residents. As a result, Namhae has the highest average score(4.9). On the contrary, Hampyeong has the lowest(1.6). Coastal residents in Namhae seem to have better understanding of first aid and preventive maintenance. But coastal residents in Hampyeong seem to not have these characteristics. Afterwards, this study builds a database of disaster response capacity, and analyzes it using the spatial autocorrelation method. Finally, the area of hot spots and cold spots for disaster response capacity was quantitatively detected.

A Study on Investigate the Actual Conditions of Coastal Disaster Prevention Forest(Ⅱ) - on Forested Site - (해안방재림 실태조사에 관한 연구(Ⅱ) - 기 조성지를 중심으로 -)

  • Chun, Kun-Woo;Lee, Jin-Ho;Cha, Du-Song;Kim, Kyung-Nam;Ma, Ho-Seop;Park, Moon-Su
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.767-770
    • /
    • 2008
  • This study was to investigate the establish situation of coastal disaster prevention forest for future-oriented management and establishment method of stands. As a result, the area of coastal disaster prevention forest was about 1,479ha in Korea. Therefore, it is necessary to prepare the thining regime for area of coastal disaster prevention forest and make a management method for fallen poor disaster prevention function of coastal forests. In addition, more positive counterplan would be necessary to conclude the protection against this disasters because the damage from coastal erosion or pine wilt disease were increased partly in some area.

  • PDF

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

Characteristic Analysys of Songdo Beach, Busan, Shoreline Changes (부산 송도해수욕장의 해안선변화 특성 분석)

  • Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this study, an investigation of the shoreline changes at Song-do beach in Busan was carried out for a coastal improvement project to prevent damage from coastal disasters. From the results of the observed data, it is seen that the shoreline moves seaward under extreme wave conditions and moves leeward under normal wave conditions. The reason for this is wave run-up when wave conditions are extreme in summer. In addition, nourishment sand is moved seaward by wave run-up. Thus, the shoreline's slope is gently decreased. Therefore, the shoreline is moved seaward.

Development of the Wind Wave Damage Estimation Functions based on Annual Disaster Reports : Focused on the Western Coastal Zone (재해연보기반 풍랑피해예측함수 개발 : 서해연안지역)

  • Choo, Tai-Ho;Cho, Hyoun-Min;Shim, Sang-Bo;Park, Sang-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.154-163
    • /
    • 2018
  • Not only South Korea but also Global world show that the frequency and damages of large-scale natural disaster due to the rise of heavy rain event and typhoon or hurricane intensity are increasing. Natural disasters such as typhoon, flood, heavy rain, strong wind, wind wave, tidal wave, tide, heavy snow, drought, earthquake, yellow dust and so on, are difficult to estimate the scale of damage and spot. Also, there are many difficulties to take action because natural disasters don't appear precursor phenomena However, if scale of damage can be estimated, damages would be mitigated through the initial damage action. In the present study, therefore, wind wave damage estimation functions for the western coastal zone are developed based on annual disaster reports which were published by the Ministry of Public Safety and Security. The wind wave damage estimation functions were distinguished by regional groups and facilities and NRMSE (Normalized Root Mean Square Error) was analyzed from 1.94% to 26.07%. The damage could be mitigated if scale of damage can be estimated through developed functions and the proper response is taken.

Why More Flood Disasters are Occurring (New Zealand Examples & Solutions)

  • Smart, G.M.;Mckerchar, A.I.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.33-39
    • /
    • 2008
  • Most New Zealanders reside in coastal regions and four of the larger cities are situated on active floodplains. There have been many recent storm events with rainfall AEPs of 1/150 or rarer and there have been recent flood-related disasters. Insurance claim statistics indicate that the frequency of floods is increasing. Such statistics are alarming local government authorities, insurance companies and populations in low-lying areas. The underlying physical and hydrologic causes of the flood disasters are investigated. It is found that the present numbers of rare rainfall events are not unexpected and there does not appear to be any significant trend evident in the occurrence of river floods. What is revealed is that the river floods appear clustered in certain decades. The clusters do not occur at the same times in different parts of the county. Recently there have been more floods in the north of New Zealand which is where more of the population lives. Also, the increase in population has seen more houses built in locations prone to flooding. Thus the increase in flood-related insurance claims is attributed to more people getting in the way of floods, rather than an increase in the number of floods that have occurred.

  • PDF

Environmental Changes Due to Planting Pine Trees on the Coastal Dunes Along the East Coast of Korea - Case Study of Osan Beach in Yangyang-gun - (곰솔 조림으로 인한 동해안 사구의 환경변화 - 양양군 오산해변을 사례로 -)

  • Choi, Kwang Hee;Kong, Hak-Yang
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2020
  • Planting pine trees on the coastal dunes has been carried out along the East coast as well as West coast of South Korea. Although the artificial forestation has been regarded as a good policy that help to protect the coastal area from natural disasters, but its real effect to the landscapes is still unknown. In this study, we have installed a monitoring site with an automated weather station to study requirements for dune formation and its environmental changes in Osan beach, Yangyang-Gun, Gangwon Province. We analyzed the meteorological data collected from 2010 to 2019 and vegetational changes in the study area. As a result, the wind speed is decreased by around 30% and the pine-covered area is increased by around 300m2 after planting Japanese Black Pine in 2015. At present, it seems that the eolian transport of sand particle is minimal, because the dominant winds are the westerly winds which is not landward but seaward, and because the surface roughness length is about 0.5m which is similar to that in the deciduous forest.

Inundation Analysis on Coastal Zone around Masan Bay by Typhoon Maemi (No. 0314) (태풍 매미(0314호)에 의한 마산만 주변연안역에서의 범람해석)

  • Chun, Jae-Young;Lee, Kwang-Ho;Kim, Ji-Min;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • Wrenching climatic changes due to ecocide and global wanning are producing a natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surges. Severe waves, and destruction of the environment are adding to the severity of coastal disasters. There has been an increased interest in these coastal zone problems, and associated social confusion, after the loss of life and terrible property damage caused by typhoon Maemi. Especially if storm surges coincide with high ticks, the loss of life and property damage due to high waters are even worse. Therefore, it is desirable to accurately forecast not only the timing of storm surges but also the amount water level increase. Such forecasts are very important from the view point of coastal defense. In this study, using a numerical model, storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan Bay, Korea. In the numerical model, a moving boundary condition was incorporated to explain wave run-up. Numerically predicted inundation regimes and depths were compared with measurements from a field survey. Comparisons of the numerical results and measured data show a very good correlation. The numerical model adapted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding by severe water waves.

Wind Speed Reduction Efficiency of Potenga-Muhuri Irrigation Project Coastal Belt in Chittagong, Bangladesh

  • Kader, Mohammad Abdul;Hossain, Mohammed Kamal;Kabir, Md. Humayain
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.2
    • /
    • pp.78-89
    • /
    • 2019
  • Coastal plantation is one of the key natural defence against the tidal surge induced tropical cyclones. In Bangladesh, a total of 81 km long coastal belt was established from Potenga to Muhuri in Chittagong. This study explores the wind protection efficiency of the coastal plantations at 28 observation points along the 81 km long Potenga-Muhuri irrigation project of Chittagong coastal belt. We found that wind protection efficiency was lowest (1.40% and 7.00%) at $1^{st}$ observation point of outside the embankment (OE) and inside of the embankment (IE) than Sea Shore (SS), respectively. On the other hand, the highest (82.89% and 95.72%) wind protection efficiency was observed at $22^{th}$ observation for Outside of the Embankment (OE) and Inside of the Embankment (IE) than Sea Shore (SS), respectively. This study also highlighted on species specific wind protection efficiency. The result revealed that 6-year old Casuarina, 6-year old mixed plantation and 10-year old Sonneretia apetala with the width of 20.12 m, 30.48 m, and 15.24 m can reduce wind speed up to 30 H, 30 H and 25 H at windward side, respectively. Analysis also showed that percentage of wind reduction was significantly higher at plantation coast than barren, and ship breaking yard coast. The findings of this study have great potentiality to contribute substantially to take more coastal embankment afforestation programs by the Government of Bangladesh and to choose the more wind resistant plant species throughout the coastal areas of the country.