• Title/Summary/Keyword: Coastal Zone

Search Result 758, Processing Time 0.029 seconds

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

Water Temperature and Salinity Variation Analysis in the Inter-Tidal Zone, South of Ganghwado, Korea (강화도 남단 조간대에서의 수온 및 염분 변동양상 분석)

  • Cho, Hong-Yeon;Koo, Bon-Joo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-320
    • /
    • 2008
  • Water temperature and salinity variation patterns were analysed using the CTD data measured in the Yeochari, Dongmakri and Donggeomdo intertidal zone, south of Ganghwado. Only the data during the submersion period of the measurement stations were used in this analysis. It is clearly shown that the correlation between air and water temperatures is very low and the water temperature variation shows clearly the opposite patterns as the tidal elevation increases and decreases. Whereas, the salinity change shows the similar pattern of the tidal elevation change pattern because the salinity change pattern could be described as the increasing function from the shoreline to offshore regions due to the continuous ground-water inflow in the adjacent watersheds. The salinity is increased from the submersion time to the high tide and decreased from the high tide to the exposure time.

Model Parametrization on the Mixing Behavior of Coastal Discharges

  • Kim, Jong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • A common feature in the three-dimensional numerical model experiments of coastal discharge with simplifed model and idealized external forcings is investigated. The velocity fields due to the buoyancy and flow flux, are spreaded radiately and the surface velocites are much greater than homegeneous discharges. The coastal dischargd due to the Coriolis force and flow flux are shaped a anticyclical gyre (clockwise) and determined the scale of the gyre in the coastal zone, respectively. The bottom topography restricts a outward extention of the coastal fronts and it accelerates a southward flow.

Species Diversity of Planktonic Copepods and Distribution Characteristics of Its Major Species in Coastal Waters of Korea (한국 연안에 출현하는 부유성 요각류의 종다양성과 주요 종의 분포특성)

  • Seo, Min Ho;Choi, Seo Yeol;Park, Eun-Ok;Jeong, Dalsang;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.525-537
    • /
    • 2018
  • The Korean coast is divided into the West Korea Coastal zone (WKC), the South Coastal zone of Korea (SCK), the East Korea Coastal zone (EKC), and Jeju Coastal zone of Korea (JCK). Each coastal zone has different marine environment characteristics. This study analyzed zooplankton data of KOEM (Korea Environment Management Corporation) collected in the Korean coastal waters the spring and summer of 2015 and 2016. In spring, water temperature was lowest in the JCK, and gradually increased in the order of EKC, SCK, and WKC, while in summer lowest in WKC and increased in the order of EKC, SCK, and JCK. Salinity was lowest in WKC which had many rivers flowing inland, and increased in the order of SCK, EKC and JCK in spring. In summer it was lowest in JCK and increased toward WKC, SCK, and EKC. In summer, Chlorophyll-a concentrations were generally low, but was lowest in JCK in spring. In the study area, a total of 77 species occurred, of which 50 species did in spring and 65 species in summer. The number of species was lowest in JCK and highest in SCK in spring and summer, respectively. Paracalanus parvus s. l. was the most dominant species or the second dominant species in Korean coastal areas in spring, but it was predominant in summer. In addition, in spring Acartia hongi, Calanus sinicus, Oithona similis were predominant in WKC, Oithona similis and Corycaeus affinis in SCK, O. similis and Corycaeus sp. in EKC, C. affinis and O. setigera in JCK. In summer Corycaeus spp., O. similis, A. hongi, Tortanus forcipatus were predominant in WKC, C. affinis, Pseudodiaptomus marinus in SCK, O. similis, A. omorii, Corycaeus sp. in EKC, and A. steueri, A. pacifica, Oithona sp., C. sinicus in JCK. The copepod community in the Korean coastal areas were classified into four areas, WKC-western SCK, eastern SCK, EKC and JCK according to differences in environmental factors such as water temperature, salinity, Chl-a concentration, and suspended matter concentration of each coastal area.

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

A study on bulk deposition flux of dustfall and insoluble components by the wind intensity in Busan, Korea (바람의 강도에 따른 강하먼지와 불용성 성분의 조성특성)

  • 황용식;김유근;박종길;문덕환
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.651-662
    • /
    • 2002
  • Weather elements were observed by the AWS (Automatic Weather System) and dustfall particles were collected by the modified American dust jar (wide inlet bottle type) at 4 sampling sites in Busan area from March. 1999 to February, 2000. Thirteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Si, and Zn) were analyzed by AAS and ICP. The purposes of this study were to estimate qualitatively various bulk deposition flux of dustfall and insoluble components by applying regional and seasonal wind intensity. Frequency of wind speed were found in order of low(1-3m/s), very low(<1m/s), medium(3-8m/s) and high(>8m/s), and annual mean had higher range at low(1-3m/s) for 56.3%. Strong negative linear correlation were observed between dustfall and wind direction (northeastern and eastern), but strong positive linear correlation were observed between dustfall and wind direction (western and northwestern) at industrial, commercial and coastal zone(p<0.05). While a negative correlation were observed between wind speed frequency of very low(<1 m/s) and dustfall, and positive correlation were observed between wind speed frequency of low(1-3m/s) and dustfall in coastal zone(p<0.05). The correlation coefficient was observed 0.556 between wind speed frequency of low(1-3m/s) and Ni by commercial zone(p<0.05). The correlation coeffcient show well-defined insoluble trace metals (Al, Ca, Cr, Cu, Fe, Pb, and Zn) and wind speed frequency of low(1-3m/s) at coastal zone, which was found significant difference(p<0.01).