• Title/Summary/Keyword: Coastal Erosion Study

Search Result 218, Processing Time 0.03 seconds

Development and Application of a Coastal Disaster Resilience Measurement Model for Climate Change Adaptation: Focusing on Coastal Erosion Cases (기후변화 적응을 위한 연안 재해 회복탄력성 측정 모형의 개발 및 적용: 연안침식 사례를 중심으로)

  • Seung Won Kang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.713-723
    • /
    • 2023
  • Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.

Analysis of Gangwon-do Coastline Changes Using Aerial Photograph Immediately after the Liberation (해방 직후 항공사진을 이용한 강원도 해안선 변화 분석)

  • Ahn, Seunghyo;Choi, Hyun;Kim, Gihong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.717-726
    • /
    • 2020
  • Social costs are increasing in Gangwon-do east coast due to coastal erosion. Long-term coastline change information is essential for analyzing this phenomenon. In this study, aerial photographs immediately after liberation are used for 1950's coastline extraction. The study area is from Sokcho Cheongho beach to Yangyang Seorak beach. The aerial photograph is geometrically corrected using DLT(Direct Linear Transformation) method to extract past coastline and compare it with present data. Coastal erosion and deposition areas are calculated in study area. Artificial structures such as harbors and breakwaters have caused changes in ocean currents and sediments from river estuaries. In most cases, the deposition occurred at the southern area of artificial structures and the erosion occurred on surrounding beaches. Coastline information extracted from past aerial photographs can be useful to provide information on long-term changes.

Variation Characteristics of Haeundae Beach using Video Image (비디오 영상 기반의 해운대 해빈 변동특성)

  • Kang, Tae-Soon;Kim, Jong-Beom;Kim, Ga-Ya;Kim, Jong-Kyu;Hwang, Chang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • In this study, we analyzed the real time video image obtained from the video monitoring system to grasp the shoreline, beach width, and area change of Haeundae beach. The video monitoring techniques enabled continuous monitoring for a long period at a much lower cost than general survey methods. It was possible to grasp quantitative beach variation characteristics of Haeundae beach through image acquisition, rectification, and image processing of video images. According to the monitoring results, the erosion rate of Haeundae beach in spring and summer was -19.8% in 2014 and -6.7% in 2015. The erosion rate in 2016 was -6.4%, which showed that the erosion rate in spring and summer continued to decrease. In particular, the influence of the erosion at the time of typhoon CHABA was revealed to be smaller than in the past. It can be concluded that these variations were due to beach width expansion by beach nourishment and the installation of submerged breakwaters.

A Preliminary Study on Shore Protection from Erosion around Seoguipo Coastal Waters (서귀포 연안해역의 침식대책 수립을 위한 기초연구)

  • Jeon Min-Su;Lee Joong-Woo;Lee Hak-Seung;Hwan Ho-Dong;An Do-Kyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.537-545
    • /
    • 2005
  • Traditionally Jeju island has a mild oceanic climate throughout the year and famous as worldwide resort area bemuse of its pure natural environment and dramatic coastal scenery. But unpredicted coastal erosion problem, mused by variation of environmental conditions from construction of coastal structure and renovation of the existing ports, has raised its head above the water, and is becoming serious these days just like other coastal area in Korea. The phenomena happen here along the seaside of southern part of the island show that severe changes in coastal line from erosion and even witnessed the coastal cliff failure. In advanced countries, coastal engineers and researchers have studied deeply about this kind of problem for a long time. However, as it is not sot active in Korea and lack of research data, there exists difficulties on building protection methods and thoughtless constructions might make it more complicated and fatal to the coastal environment. In this study, we investigated some case studies of other countries and intended to induce and propose some integral protection methods for coastline erosion, considering environmentally sound and water friendly way of development such as artificial reef, floating breakwater, and double cellblock breakwater. Finally, we made analysis on the proposed methods with numerical model test and evaluation on the feasibility of each method.

A Preliminary Study on Shore Protection from Erosion around Seoguipo Coastal Waters (서귀포 연안해역의 침식대책 수립을 위한 기초연구)

  • Jeon, Min-Su;Lee, Joong-Woo;Lee, Hak-Seung;Hwang, Hwang;An, Do-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • Traditionally Jeju island has a mild oceanic climate throughout the year and famous as worldwide resort area bacause of its pure natural environment and dramatic coastal scenery. But unpredicted coastal erosion problem, caused by variation of environmental conditions from construction of coastal structure and renovation of the existing ports, has raised its head above the water, and is becoming serious these days just like other coastal area in Korea. The phenomena happen here along the seaside of southern part of the island show that severe changes in coastal line from erosion and even witnessed the coastal cliff failure. In advanced countries, coastal engineers and researchers have studied deeply about this kind of problem for a long time. However, as it is not sot active in Korea and lack of research data, there exists difficulties on building protection methods and thoughtless constructions might make it more complicated and fatal to the coastal environment. In this study, we investigated some case studies of other countries and intended to induce and propose some integral protection methods for coastline erosion, considering environmentally sound and water friendly way of developement such as artificial reef, floating breakwater, and double cellblock breakwater. Finally, we made analysis on the proposed methods with numerical model test and evaluation on the feasibility of each method.

  • PDF

Coastal Topography and Shoreline Change in Gohyun Bay, Geojedo (거제 고현만 주변해역의 지형 및 해안선 변화 특성)

  • Kim Jong-Kyu;Kim Myong-Won;Lee Moon-Ock;Lee Yeon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.137-142
    • /
    • 2004
  • There has been considerable controversy over the change of coastal topography and shoreline by coastal erosion in Gohyun Bay, Geojedo. In this study, we analyzed aerial photographs and surveyed coastal topography and shoreline. Changes between years were identified using a GIS overlay analysis and field surveys with DGPS, Total Station and Echo Sounder. As a result, we were able to identify changes by coastal erosion in the area of Gohyun Bay, Geojedo.

  • PDF

The Restoration Effect of Deltacon Method in Coastal Erosion (Deltacon공법을 통한 해안 침식지의 복구 효과 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Lee, Poong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.35-50
    • /
    • 2017
  • This study is to see the recovery effect of the Deltacon method by investigating the amount of sand deposition, the topographical cross section and the vegetation structure; and to derive the effective recovery method of coastal erosion area. The target areas of this study include Jinri coastal dune, Bajireum coastal dune and Seopori coastal dune in Deokjeok-do Island, Ongjin-gun, Incheon. In order to assess the current status of the coastal erosion area recovery, the soil profile structure map was prepared on the site and then the amount of sand deposition within 1m was calculated indoors. The vegetation recovery status of the costal erosion area was assessed via the analyses of the topographical profile structure and the plant community structure, and we aim to derive the effective recovery plan of the Deltacon method with the results. With the Deltacon method, structures with ductile material, special non-woven fabric bags filled with soil and vegetation can be performed therefore the structuralstability and prevention of sand erosion can be achieved. The amounts of sand deposition of Bajireum coastal dune, Seopori costal dune and Jinri costal dune were calculated $0.98{\sim}2.54m^3$, $1.02{\sim}2.96m^3$, and $0.27{\sim}0.75m^3$, respectively, and it is considered that the costal erosion recovery is actively performed for Bajireum costal dune and Seopori costal dune. The analysis results of vegetation structures by topography show that the installation of the send collecting net in steep areas has been highly effective and the Deltacon-constructed target areas have been restored to vegetation and the costal dune, which is similar to the natural dune. The investigation of the plant community structure in Deokjeok-do Island costal dune, Incheon displayed similar research results of the existing costal dune flora and confirmed the emergence of Lathyrus japonicus, Carex kobomugi, Elymus mollis, Vitex rotundifolia, and Calystegia soldanella and others. In order to carry out further effective recovery with the Deltacon method, improvements to rootage of herbaceous vegetation are needed in areas without foredune herbaceous vegetation, and continuos maintenance & management monitoring of connected windbreak forest to costal dunes are also necessary.

Coastal Erosion Time-series Analysis of the Littoral Cell GW36 in Gangwon Using Seahawk Airborne Bathymetric LiDAR Data (씨호크 항공수심라이다 데이터를 활용한 연안침식 시계열 분석 - 강원도 표사계 GW36을 중심으로 -)

  • Lee, Jaebin;Kim, Jiyoung;Kim, Gahyun;Hur, Hyunsoo;Wie, Gwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1527-1539
    • /
    • 2022
  • As coastal erosion of the east coast is accelerating, the need for scientific and quantitative coastal erosion monitoring technology for a wide area increases. The traditional method for observing changes in the coast was precision monitoring based on field surveys, but it can only be applied to a small area. The airborne bathymetric Light Detection And Ranging (LiDAR) system is a technology that enables economical surveying of coastal and seabed topography in a wide area. In particular, it has the advantage of constructing topographical data for the intertidal zone, which is a major area of interest for coastal erosion monitoring. In this study, time series analysis of coastal seabed topography acquired in Aug, 2021 and Mar. 2022 on the littoral cell GW36 in Gangwon was performed using the Seahawk Airborne Bathymetric LiDAR (ABL) system. We quantitatively monitored the topographical changes by measuring the baseline length, shoreline and Digital Terrain Model (DTM) changes. Through this, the effectiveness of the ABL surveying technique was confirmed in coastal erosion monitoring.

An Experimental Study on Characteristics of Beach Erosion Considering Armoring Effect of Gabions (개비온의 피복효과를 고려한 해빈침식특성에 관한 실험적 연구)

  • Lee, Seong Dae;Lee, Sang Young;Choi, Hyuk Jin;Shin, Young Seop
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.305-313
    • /
    • 2019
  • Number of coastal protection structures have been increased rapidly due to rising sea levels and deteriorated sea conditions. Coastal structures should be designed to meet coastal engineering requirements and ecosystem conditions, while they are not lost or removed. In this study, trapezoidal gabion block was developed for the purpose, and two-dimensional laboratory experiments were conducted to validate applicability of the block. The experiments were carried out with eight types of erosive and accretive wave conditions. As a result, it was confirmed that the gabion blocks have a feature of preventing erosion of beach. The newly designed gabion blocks could be an alternative as a countermeasure method for beach erosion.

Monitoring of Coastal Erosion and Accretion Changes using Sea Walls Surveying (호안측량에 의한 해안침식 및 퇴적 변화량 모니터링)

  • Lee, Hyung-Seok;Um, Dae-Yong;Jang, Eun-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.186-195
    • /
    • 2005
  • Topography of beach line is keeping stability for several years, their soil values have been maintained in balances. Install of coastal structures have caused deformation for beaches and acted as a function to structures. Therefore, quantitative prediction of beaches topography according to structure install is required to prevent the beaches deformation and progress proper coastal preservation work. In this study, we analyzed coastal changes caused by erosion and accretion according to development and drew up a cross-section to share 8 stations using coordinates and depth surveying in groin of Soheuksan island port. Elevation distribution and changes by observation period is calculated -0.30m~+0.20m after comparing results of five months in October 7, 2004 surveying results and fell into insignificance. We thinks periodic observation of coastal erosion and accretion take place for the season and long-term coastal changes in beaches width is analyzed.

  • PDF