• 제목/요약/키워드: Coarse particulates

검색결과 22건 처리시간 0.018초

大氣中 重金屬의 粒經分布에 關한 硏究 (Studies on Particle Size Distribution of Heavy Metals in the Atmosphere)

  • 손동헌;강춘원
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.57-63
    • /
    • 1986
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to May 1986 according to particle size using Andersen high-volume air sampler, and 6 heavy metals (Fe, Mn, Cu, Ni, Zn, Pb) in these particulates were analyzed by atomic absorption spectrophotometry. The arithmetic mean concentration of A.P.M. was 195.57$\mug/m^3$. The arithmetic mean concentrations of 6 metals (Fe, Mn, Cu, Ni, Zn and Pb) were 3385.04, 1451.67, 897.94, 159.68, 127.14 and 59.49 $ng/m^3$ respectively. The order of heavy metals contributing to A.P.M. was as follows: Fe > Zn > Pb > Cu > Mn > Ni. These heavy metals were devided into 3 groups according to their particle size distribution. The contents of heavy metals belonging to the 1st group (Fe, Mn) were increased with the particle size. On the contrary, the content of Pb belonging to the 2nd group (Pb) was increased with the decrease in the particle size. The heavy metal contents in the 3rd group (Ni, Cu, Zn) were lowest in the particle size range of 2.0-3.3 $\mum$ compared with particles larger or smaller tha this range. The seasonal variation of heavy metal concentration were as follows: Fe and Mn contents were highest in spring, but Ni and Pb contents were highest in winter. Statistical analysis showed that there was a significant correlation between A.P.M. and Fe in coarse particles, meanwhile between A.P.M. and Pb in the case of fine particles.

  • PDF

고비사막으로부터 황사수송이 가을에 강릉시의 시간별 PM10, PM2.5, PM1 간의 농도차비와 상관관계에 미치는 영향 (Impact of Yellow Dust Transport from Gobi Desert on Fractional Ratio and Correlations of Temporal PM10, PM2.5, PM1 at Gangneung City in Fall)

  • 이미숙;정진도
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.217-231
    • /
    • 2012
  • Hourly concentrations of $PM_1$, $PM_{2.5}$ and $PM_{10}$, were investigated at Gangneung city in the Korean east coast on 0000LST October 26~1800LST October 29, 2003. Before the intrusion of Yellow dust from Gobi Desert, $PM_{10}$($PM_{2.5}$, $PM_1$) concentration was generally low, more or less than 20 (10, 5) ${\mu}g/m^3$, and higher PM concentration was found at 0900LST at the beginning time of office hour and their maximum ones at 1700LST around its ending time. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$($PM_{2.5}$ and $PM_1$, and $PM_{10}$ and $PM_1$) was very high with 0.90(0.99, 0.84), and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.37~3.39(0.23~0.54), respectively. It implied that local $PM_{10}$ concentration could be greatly affected by particulate matters of sizes larger than $2.5{\mu}m$, and $PM_{2.5}$ concentration could be by particulate matters of sizes smaller than $2.5{\mu}m$. During the dust intrusion, maximum concentration of $PM_{10}$($PM_{2.5}$, $PM_1$) reached 154.57(93.19, 76.05) ${\mu}g/m^3$ with 3.8(3.4, 14.1) times higher concentration than before the dust intrusion. As correlation coefficient of $PM_{10}$ and $PM_{2.5}$(vice verse, $PM_{2.5}$, $PM_1$) was almost perfect high with 0.98(1.00, 0.97) and fractional ratios of $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 0.48~1.25(0.16~0.37), local $PM_{10}$ concentration could be major affected by particulates smaller than both $2.5{\mu}m$ and $1{\mu}m$ (fine particulate), opposite to ones before the dust intrusion. After the ending of dust intrusion, as its coefficient of 0.23(0.81, - 0.36) was very low, except the case of $PM_{2.5}$ and $PM_1$ and $(PM_{10}-PM_{2.5})/PM_{2.5}((PM_{2.5}-PM_1)/PM_1)$ were 1.13~1.91(0.29~1.90), concentrations of coarse particulates larger than $2.5{\mu}m$ greatly contributed to $PM_{10}$ concentration, again. For a whole period, as the correlation coefficients of $PM_{10}$, $PM_{2.5}$, $PM_1$ were very high with 0.94, 1.00 and 0.92, reliable regression equations among PM concentrations were suggested.