• 제목/요약/키워드: Coalition Formation Game

검색결과 12건 처리시간 0.026초

The Influence of Reciprocity on Individual Decisions in a Climate Coalition Experiment

  • LIN, Yu-Hsuan
    • Asian Journal of Business Environment
    • /
    • 제10권2호
    • /
    • pp.5-15
    • /
    • 2020
  • Purpose: This study examines the impact of individual reciprocal preferences on coalition formation. The reciprocal model considers a player's own payoff, the player's perception of others' payoffs, and others' perceptions of the player's payoff. Research design, data and methodology: A reciprocal model is built to illustrate how reciprocity influences individual decisions in a coalition game and its formation. The prediction is examined with experimental evidences from a dictator game and a membership game. Results: The theoretical result suggests that the coalition formation could be unstable due to negative reciprocal kindness. The experimental findings support that negative reciprocal kindness could lead players participating in a coalition, no matter their dominant strategies are. When subjects were essential to make contributions to a coalition, they were more likely to cooperate if they were treated badly. In contrast, when subjects were unnecessary, the reciprocal kindness could enhance cooperative tendencies. Conclusions: This study reveals that the reciprocal behavior could influence individual decisions and reshape the coalition formation. In terms of policy implications, this study has shown that coalition formation could be reshaped by reciprocal prefe rences. Due to the strategic and complicated decision process in an interactive environment, a comprehensive investigation of factors would be required in a climate coalition in practice.

Performance Enhancement for Device-to-Device Under laying Cellular Network Using Coalition Formation Game

  • Radwan, Amr;Kim, Hoon
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1415-1423
    • /
    • 2016
  • Interference in device-to-device (D2D) communication underlaying cellular network needs to be elaborately investigated because of channel sharing. The objective is to improve the quality of D2D communications while maintaining high performance for cellular users. In this paper, we solve the above problem by jointly considering channel allocation and power control using coalition formation game. Our cooperative game theoric approach allows to enhance network-wide performance. We design a merge-and-split algorithm to deal with the complexity of the combinatorial structure in coalition formation problem. The analytical and numerical results show that our algorithm converges to a stable point which achieves high network performance.

Collaborative Sub-channel Allocation with Power Control in Small Cell Networks

  • Yang, Guang;Cao, Yewen;Wang, Deqiang;Xu, Jian;Wu, Changlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.611-627
    • /
    • 2017
  • For enhancing the coverage of wireless networks and increasing the spectrum efficiency, small cell networks (SCNs) are considered to be one of the most prospective schemes. Most of the existing literature on resource allocation among non-cooperative small cell base stations (SBSs) has widely drawn close attention and there are only a small number of the cooperative ideas in SCNs. Based on the motivation, we further investigate the cooperative approach, which is formulated as a coalition formation game with power control algorithm (CFG-PC). First, we formulate the downlink sub-channel resource allocation problem in an SCN as a coalition formation game. Pareto order and utilitarian order are applied to form coalitions respectively. Second, to achieve more availability and efficiency power assignment, we expand and solve the power control using particle swarm optimization (PSO). Finally, with our proposed algorithm, each SBS can cooperatively work and eventually converge to a stable SBS partition. As far as the transmit rate of per SBS and the system rate are concerned respectively, simulation results indicate that our proposed CFG-PC has a significant advantage, relative to a classical coalition formation algorithm and the non-cooperative case.

인센티브 매커니즘에 기반한 효율적인 이동 크라우드소싱 기법에 대한 연구 (A New Effective Mobile Crowdsourcing Control Scheme Based on Incentive Mechanism)

  • 박광현;김승욱
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 논문에서는 모바일 크라우드소싱 환경에서 게임이론의 인센티브 매커니즘 기법과 중복 연합 형성 게임(Overlapping Coalition Formation Game)을 적용하여 시스템의 진실성을 보장하고 모바일 노드의 이득을 극대화하는 효율적인 기법을 제안한다. 제안된 매커니즘 기법은 노드가 자신의 정보를 솔직하게 드러냈을 때 가장 높은 보상을 지급함으로써 노드가 진실된 정보를 보고하도록 한다. 또한 중복 연합 형성 게임을 적용함으로써 노드들은 자신 주변의 가장 높은 보상을 지급하는 연합을 선택하고 자신의 자원이 허락하는 한 다수의 연합에 참가하여 업무를 수행함으로써 효율성을 높일 수 있었다. 컴퓨터 시뮬레이션을 통해 기존에 제안된 다른 기법에 비해 제안된 기법은 모바일 노드들이 높은 보상을 얻기 위해 자신의 정보를 솔직하게 드러냈고 자신의 성능과 남은 자원에 따라 더 높은 보상을 받을 수 있음을 확인할 수 있었다.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.

Spectrum Allocation based on Auction in Overlay Cognitive Radio Network

  • Jiang, Wenhao;Feng, Wenjiang;Yu, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3312-3334
    • /
    • 2015
  • In this paper, a mechanism for spectrum allocation in overlay cognitive radio networks is proposed. In overlay cognitive radio networks, the secondary users (SUs) must first sense the activity of primary users (PUs) to identify unoccupied spectrum bands. Based on their different contributions for the spectrum sensing, the SUs get payoffs that are computed by the fusion center (FC). The unoccupied bands will be auctioned and SUs are asked to bid using payoffs they earned or saved. Coalitions are allowed to form among SUs because each SU may only need a portion of the bands. We formulate the coalition forming process as a coalition forming game and analyze it by game theory. In the coalition formation game, debtor-creditor relationship may occur among the SUs because of their limited payoff storage. A debtor asks a creditor for payoff help, and in return provides the creditor with a portion of transmission time to relay data for the creditor. The negotiations between debtors and creditors can be modeled as a Bayesian game because they lack complete information of each other, and the equilibria of the game is investigated. Theoretical analysis and numerical results show that the proposed auction yields data rate improvement and certain fairness among all SUs.

Coalition based Optimization of Resource Allocation with Malicious User Detection in Cognitive Radio Networks

  • Huang, Xiaoge;Chen, Liping;Chen, Qianbin;Shen, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.4661-4680
    • /
    • 2016
  • Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. Collaborative spectrum sensing is known as a promising technique to improve the performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the performance of CRNs. In this paper, we propose a coalition based malicious users detection (CMD) algorithm to detect the malicious user in CRNs. The proposed CMD algorithm can efficiently detect MUs base on the Geary'C theory and be modeled as a coalition formation game. Specifically, SSDF attack is one of the key issues to affect the resource allocation process. Focusing on the security issues, in this paper, we analyze the power allocation problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The MPA algorithm is divided into two steps: the MUs detection step and the optimal power allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the MUs detection probability and the energy consumption of MUs detection. Secondly, in the optimal power allocation step, we use the Lagrange dual decomposition method to obtain the optimal transmission power of each SU and achieve the maximum utility of the whole CRN. Numerical simulation results show that the proposed CMD and MPA scheme can achieve a considerable performance improvement in MUs detection and power allocation.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권6호
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.