• Title/Summary/Keyword: Coalbed methane resources

Search Result 18, Processing Time 0.024 seconds

Selection Technique of Drilling, Completion, and Stimulation Considering Reservoir Characteristics of Coalbed Methane Reservoir, Indonesia (인도네시아 석탄층 메탄가스(CBM) 저류층 특성을 고려한 시추·완결·자극 기법 선정 연구)

  • Choi, Jun Hyung;Han, Jeong-Min;Lee, Dae Sung
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2014
  • We investigated reservoir properties of coalbed methane and typical development of drilling, completion, and stimulation methods. We optimized selection technique for development methods by consifering characteristics of coalbed methane resercoir in the San Juan, Black Warrior and Powder River basins of United States. Finally, well-optimized development methods for coalbed methane in the Barito Basin, Indonesia are suggested. This study may be useful to select economical and efficient drilling, completion, and stimulation methods in coalbed methane development especially in Indonesia.

Coalbed methane potential for Korean anthracite and possibility of its utilization (국내무연탄층에 함유된 메탄자원의 잠재력과 그 이용가능성)

  • 박석환
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.113-121
    • /
    • 1999
  • Coal is both source rock and reservoir rock for the coalbed gas. Coalbed gas. Coalbed gas is predominantly methane and has a heating value of approximatly 1000 BTU/$ft^3$. Most of methane is stored in the coal as a monomolecular layer adsorbed on the internal surface of the coal matrix. The amount of methane stored in coal is related to the rank and the depth of the coal. THe higher the coal rank and the deeper the coal seam is presently buried, the greater its capacity to hold gas. Most of Korean Coal is anthracite or metaanthracite, Ro. 3.5~5.5%, and total reserves are 1.6 billion metric tons. The domestic demand for coal was drastically decreased and the rationalization policy carried out from 1987 on coal industry. Now that a large number of coal mines was closed only a few mines continued to produce not more than 5 million tons for year. It is therefore recommended to formulate a strategy to explore and exploit the resources of coalbed methane in Korea.

  • PDF

Global Trends of Unconventional CBM Gas Science Information (비전통 석탄층 메탄가스 학술정보 분석)

  • Cho, Jin-Dong;Kim, Jong-Hyun
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.351-358
    • /
    • 2013
  • Methane burns more clearly than any other fossil fuels. Coalbed methane(CBM) is natural gas contained in coal beds. This gas is usually producted from coal that is either too deep or too poor-quality to be mined commercially. While global coalbed methane resource estimates are rough, they indicate between 84 and 377tcm, which compares with proven natural gas reserves of 180tcm. Coalbed methane resources are currently only produced on a major scale in the United States, Canada, Australia and China. In this study, we analysed total 109 published papers for the CBM during the 1990~2012 periods by the programs of 'web of science'. The results of analysis, the CBM study led by the United States, the follow India and Australia. In subject area(web of sciences), Energy Fuels is 57, Engineering 58 and Geology 41 papers, respectively.

Optimum Design on the Mixed Ratio of Injection Gas with CO2/N2 in Enhanced Coalbed Methane Recovery (석탄층 메탄가스 회수증진공법에서 CO2/N2 주입가스의 혼합 비율 최적 설계)

  • Yoo, Hyun-Sang;Kim, Young-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Enhanced coalbed methane recovery (ECBM), as injecting $CO_2$ or $N_2$ into the coalbed methane (CBM) reservoir for increasing methane recovery, takes center stage in these days. ECBM makes a better recovery than the conventional production method, it called dewatering process. However the characteristics of injection gas affect to methane recovery, thus analysis on the mixed ratio of injection gas should be required. In this study, CBM reservoir model was built to estimate the methane recovery of ECBM method by different mixed ratio of injection gas. Additionally, to consider the characteristics of injection gas such as carbon captured storage, nitrogen re-injection, etc. economic analysis was performed. The results showed that ECBM cases produced methane almost twice as much as dewatering case and $CO_2$ 10% and $N_2$ 90% case resulted in the highest methane recovery among the mixed gas cases. On the other hand, the results of economic analysis showed that $CO_2$ 20% and $N_2$ 80% case made the highest total production profit. Therefore, both the recovery of methane and economical efficiency should be considered to apply ECBM process.

Experimental Study on the Adsorption Characteristics of Methane Gas Considering Coalbed Depth in Coalbed Methane Reservoirs (석탄층 메탄가스 저류층에서 탄층 심도를 고려한 메탄가스의 흡착 특성에 관한 실험 연구)

  • Chayoung Song;Dongjin Lee;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.39-48
    • /
    • 2023
  • This study presents the experimental results to measure the adsorption amount of methane gas by coal according to the conditions of a coalbed methane (CBM) reservoir. Adsorbed gas to coal seam particles was measured under reservoir conditions (normal pressure ~ 1,200 psi pressure range, temperature range15 ~ 45℃) using coal samples obtained from random mines in Kalimantan Island, North Indonesia. The obtained amount of absolute adsorbed gas was applied to triangular with linear interpolation to calculate the maximum amount of adsorbed gas according to temperature and pressure change, at which no experiment was performed. As a result, it was revealed that the amount of adsorbed gas to coal particles increased as the pressure increased and temperature decreased, but the increase of the amount of adsorbed gas decreased at more than an appropriate depth(1,000 ft). In the cleat permeability and cleat porosity for each depth of the coal bed considering the effective stress, the cleat permeability was 28.86 ~ 46.81 md, and the cleat porosity was 0.83 ~ 0.98%. This means that the gas productivity varies significantly with the depth because the reduction of the permeability according to the depth in the coal seam is significant. Therefore, a coalbed depth should be considered essential when designing the spacing of production wells in a coalbed methane reservoir in further study.

Nodal Analysis of Optimum Operating Condition on Gathering System Considering Coalbed Methane Production Characteristics (석탄층 메탄가스 생산 특성을 고려한 포집시스템 최적 운영조건 노달분석)

  • Jung, Woodong;Cho, Wonjun;Lee, Jeseol;Yu, Hyejin;Seomoon, Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Coalbed methane has a nonlinear desorption curve depending on the pressure, so an appropriate production system should be constructed considering this phenomenon. The capacity and specification of the coalbed methane gas production facility are determined by the gas flow rate and pressure in the coalbed, which is the external boundary condition of the system. Thus, it is essential to analyze these characteristics in gas production. The gas inflow equation was calculated using the reservoir flow model and utilized as the boundary condition of the whole production facility in this study. Also, to understand the effect of pressure drop on the gas flow in the production facility, the nodal analysis was performed using the flow analysis simulator of production equipment, and we determined the proper specifications and operating conditions of the production facility. This study presents a design criteria as to production and gathering system capable of effectively transporting coalbed methane.

Development of Designing and Performing Procedure for Well Test in Coalbed Methane(CBM) Reservoir (석탄층 메탄가스 저류층의 유정생산시험 설계 및 수행절차 수립연구)

  • Park, Jinyoung;Lee, Jeonghwan
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.279-289
    • /
    • 2013
  • The most critical factor in developing coalbed methane(CBM) reservoir is absolute permeability. Both productivity and economics of the CBM depend on the absolute permeability. The methods to estimate it are core analysis and well test. However, absolute permeability determined by core analysis cannot be a good representative of CBM reservoir. Therefore, it is generally estimated by well test. In this study, well test methods applicable of CBM reservoir were classified with their characteristics. Merits and demerits of each well tests were also analyzed. Based on those parameters, design considerations and procedures of well test were derived. After each well tests was performed, the procedure of well test interpretations to estimate reservoir properties such as absolute permeability and skin factor was presented.

A Study on the Production Well Spacing Design Considering Coalbed Depth in Coalbed Methane Reservoirs (석탄층 메탄가스 저류층에서 탄층 심도를 고려한 생산정 간격 설계 연구)

  • Chayoung Song;Dongjin Lee;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.98-107
    • /
    • 2023
  • This study presents a well spacing design for coalbed methane(CBM) reservoirs using the experimental results of methane gas adsorption measurement of coal samples obtained from North Kalimantan Island, Indonesia. The gas productivity analysis shows that the cumulative gas production increases as the Langmuir volume increases. This indicates that the maximum gas adsorption directly affects the gas production. In addition, the maximum gas production increases with the increase of reservoir permeability, and the dewatering period is shortened. In particular, the cumulative gas production increases as the production influence area increases. However, when comparing productivity per unit well, the maximum cumulative gas production is found between 2,000 ft of depth and 80-160 acres of the influence area. When reservoir depth and production influence area are considered simultaneously, the results of the appropriate well depth and spacing calculations show that gas productivity is highest between 600-2,000 ft. In this case, it is appropriate to design well spacing in the range of 80-160 acres. Therefore, well spacing design considering coalbed depth in undeveloped CBM reservoirs can be accomplished using gas sorption test results from coal samples.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.