• Title/Summary/Keyword: Coal-fired

Search Result 400, Processing Time 0.029 seconds

Overview of coal-fired power plant ash situation and cement industry in Vietnam

  • Hong, Ha Thi Vu;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2018
  • The development of coal-fired power plants to ensure energy security and electricity consumption is a matter for the Vietnam economy. However, the huge amount of ash discharged is a major environmental challenge. It is estimated that by the end of 2017, the amount of ash in the country is about 40 million tons and annually emitted over 16.4 million tons. While the quantity of coal-fired power plant is rising, the ash content will increase year by year if the ash doesn't treat well. The ash will be increased from 61 million tons in 2018 to 109 million tons in 2020, 248 million tons in 2025 and 422 million tons in 2030. The difficulties of coal-fired power plants are the problem of ash handling, some plants are at risk of closure because there are not enough dump capacity to storage. Therefore, Vietnam is in need of urgent measures to treat a large amount of waste from coal-fired power plants. The specific objectives of this study were as follows: (1) provide an overview of coal ash situation produced by coal-fired power plants in Vietnam; (2) study about regulations related to coal ash treatment; (3) comprehend the literature review of the cement sector status.

A Mechanism of IPP's(Coal Fired) Optimal Power Generation According to Introduction of RPS(Renewable Portfolio Standard) (RPS제도 도입에 따른 민간 석탄 발전소의 최적 발전량 결정 메커니즘 연구)

  • Ha, Sun-Woo;Lee, Sang-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1135-1143
    • /
    • 2016
  • A private company's 1,000 MW coal-fired power plant will be the first coal-fired power plant that was included in the 5th 'Basic Plan on Electricity Demand and Supply' (2010). Now it is facing the task to abide by the RPS(Renewable Portfolio Standard) policy after commercial operation. If they fail to supply the necessary REC (Renewable Energy Certificate) mandated by the RPS policy, they are subject to be fined by the government and forced to modify the cost function to reflect the burden. Eventually the company's coal-fired power plant will be forced to reduce generation to maximize profit because the amount of electricity generated by the power plant and the REC obligation is positively correlated. This paper analyzed the change of cost function of private coal-fired power plant according to the introduction of RPS policy from the viewpoint of private company, and finally proposed the optimal generation to maximize the profit of private coal-fired power plant under the current RPS policy.

A Study on Combustion Troubles, Issues and Countermeasures in the Coal Fired Power Plant Boilers with Various Coals (다양한 탄종 연소에 따른 석탄화력 보일러 연소장애 및 연소현안에 대한 대처방안 연구)

  • Kim, Chun-Kun
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.282-292
    • /
    • 2006
  • Various kinds of coals are supplied for coal fired power plants as the coal market situations are fluctuated with the high prices of oil and coals over the world. The quality of coal is decreasing as coal consumption increased and some specifications of coals are out of boiler design criteria. It could make combustion troubles such as coal clogging, spontaneous combustion, coal firing in the coal handling equipments, ash slag and clinker issues, etc. This paper covers combustion troubles, issues and countermeasures in the biggest coal fired power plant in Korea.

  • PDF

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

Fireside Corrosion Characteristics in Coal-Fired Boiler Tube (석탄연소중 발생되는 보일러 튜브의 화염측 부식특성)

  • Kim, Tae-Hyung;Seo, Sang-Il;Park, Ho-Young;Kim, Young-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.276-281
    • /
    • 2006
  • Although fireside corrosion of heat transfer surfaces in coal fired steam generators has been a problem to some extent for a number of tears, with the advent of low NOx firing systems these surfaces can be exposed to conditions that will exacerbate wastage rates. Numerous reports of waterwall wastage in coal fired boilers have appeared in the literature. It is believed that wastage results both from gaseous phase attack of metal surfaces and from deposition of ash and unburned fuel. Gaseous phase attack is known to occur in the presence of reducing sulfur species such as $H_2S$ and in the presence of fuel chlorine. The highest wastage rates are thought to be due to deposition of unoxidized material and the presence of fuel chlorine. Localized wall and near wall conditions that may exacerbate wastage include reducing conditions, high temperatures, high heat fluxes, and a high fraction of unoxidized material deposited. So, this study is directed at developing an advanced corrosion model in coal-fired utility boilers.

  • PDF

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.

Coal-fired power plants closure and just transition of port labour employment (화력발전소 폐쇄와 항만인력 고용의 공정한 전환)

  • Su-Han Woo;Du-Ri Kim
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.55-74
    • /
    • 2020
  • This study examines the policy direction and specific countermeasures for addressing possible port labour issues from the perspective of Just Transition which may be raised by closing coal fired power plants in Korea. Current energy transition policy and port labour policy in Korea are reviewed and case studies in the countries which has experienced closure of coal fired power plants are undertaken. Although it varies from country to country, a similar approach was found that the employment problem of coal fired power plant closures and measures based on Just Transition regime to mitigate the negative impacts that occur in the region are the key to successful transition. It is suggested that countermeasures for port labour should be institutionalized for providing stakeholders with legal stability covering labours not only directly employed by the plants but also employed in entities in the whole supply chains.

A Study on Environmental Impact and Cost Analysis in Electricity Generation Using MFCA For a Coal-fired Power Plant (MFCA를 적용한 환경부하 및 발전원가 분석 연구 : 석탄화력발전소 중심으로)

  • Lim, Byung-Sun;Park, Seungwook
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Global warming has pressured companies to put a greater emphasis on environment management which allows them to reduce environmental impact and costs of their operations. In Korea, the coal-fired power plants take a large account of electricity generation at 31.7% of the total electricity usage in 2014. Thus, environmental impact of coal-fired power plants is significant. This paper illustrated how to compute environmental impact and costs in electricity generation at a coal-fired power plant using MFCA methodology. Compared to the traditional accounting, an advantage of MFCA is to provide information on electricity generation costs and environmental wastes incurring throughout the production process of electricity. Based on MFCA, the coal-fired power plant was able to reduce production cost of electricity by 52.3%, and environmental wastes by 47.7%. As a result, MFCA seemed to be an effective tool in environmental management for power plants.

Specification of Chemical Properties of Feed Coal and Bottom Ash Collected at a Coal-fired Power Plant

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.80-88
    • /
    • 2010
  • In order to offer a better understanding of air pollution of China as well as East Asia we attempted to characterize the chemical properties of the raw coal materials mined in China and their combusted bottom ashes generated from coal fired power plant. To this end, we measured the chemical characteristics of individual bottom ashes and feed coal fragments collected at a coal fired power generator which was operated with the raw coal dug at a coal mine in China. The chemical properties of these two sample types were determined by a synchrotron radiation X-ray fluorescence (SR-XRF) microprobe method. Through an application of such technique, it was possible to draw the 2D elemental maps in and/or on raw coal fragments and fired bottom ashes. The pulverized fine pieces of feed coal mainly consisted of mineral components such as Fe, Ca, Ti, Ca, and Si, while Fe was detected as overwhelming majority. The elemental mass of combusted bottom ash shows strong enrichment of many elements that exist naturally in coal. There were significant variations in chemical properties of ash-to-ash and fragment-to-fragment. Although we were not able to clearly distinguish As and Pb peaks because of the folding in their X-ray energies, these two elements can be used as tracers of coal fire origin.

Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method (반응표면법을 이용한 석탄 화력 보일러 연소특성 예측)

  • Shin, Sung Woo;Kim, Sin Woo;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.