• Title/Summary/Keyword: Coal recirculation

Search Result 29, Processing Time 0.025 seconds

Numerical Calculations on Flow and Behavior of Pulverized Coal and Ash Particles in 2-Stage Entrained-Flow Gasifier (2단 분류층 석탄가스화기 내의 열유동 및 미분탄/재 입자거동 계산)

  • Hwang, Jung-Ho;Park, Sun-Ho;Jung, Jin-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.895-904
    • /
    • 2001
  • Flow fields, temperature distributions, and particle trajectories in a 2-stage entrained-flow gasifier are calculated using a CFD code, FLUENT. Realizable k-$\xi$ model is used as a turbulent model. Because of swirling flow there appear recirculation regions near the burners. The characteristics of flow fields and temperature distributions in the gasifier are dependent on the swirl number of the system. Mean residence time of the particles in the reductor is inversely proportional to particle size, particle density and swirl number. As the swirl number is increasing, the particles injected from the combustor burners approach the wall near the combustor burners, which prevents the particles from entering the reductor and thus attatching the reductor wall. If the lower combustor burner angle is larger than the higher combustor burner angle for a given swirl number, the particles may move toward the reductor and cause ash/slag deposition problem.

NOx Emission Characteristics Depending on the Variations in Yaw Angle of the Secondary Air Nozzles in a Coal Fired Boiler (연소용 이차공기 수평분사각에 따른 질소산화물(NOx) 배출특성)

  • Kim, Young-Joo;Park, Ho-Young;Lee, Sung-No
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • Three dimensional numerical analysis for the coal fired boiler has been performed to investigate the effect of yaw angle variation of the secondary air nozzles on the combustion characteristics and NOx emission. It was found that the prediction gives a good agreement with plant data. The increase in yaw angle up to $20^{\circ}$ have results in the decrease in NOx emission at furnace exit and recirculation flow intensity, together with the increase of unburned carbon in ash. It also has been recognized the remarkably change in configuration of fire ball with increase in yaw angle. The results from this study would be valuable in the case of the combustion modification of the corner firing coal-fired utility boiler.

Numerical Study for the Design of Biogas-fired Low Emission Cyclone Incinerator (바이오 가스 소각용 저공해 사이클론 소각기 개발을 위한 수치 해석적 연구)

  • 전영남;김시욱;백원석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.401-410
    • /
    • 2002
  • Concerns for energy conservation, environmental pollution, and the fact that organic wastes account for a major portion of our waste materials, have created the interest of biogas, which usually contains about 60 to 70 percent methane, 30 to 40 percent carbon dioxide, and other gases, including ammonia, hydrogen sulfide, mercaptans and other noxious gases. Cyclone combustors are used for homing a wide range of fuels such as low calorific value gas, waste water, sludge. coal, etc. The 3-dimensional swirling flow, combustion and emission in a tangential inlet cyclone incinerator under different inlet conditions are simulated using a standard k-s turbulence model and ESCRS (Extended Simple Chemically-Reacting System) model. The commercial code Phoenics Ver.3.4 was used for the present work. The main parameters considered in this work are inlet velocity and air to fuel ratio. The results showed that the change of operating conditions had an influence on the shape and size of recirculation zones, mixture fraction and axial velocity which are important factors for combustion efficiency and emission behavior. The application of this kind of computer program seams to be promising as a potential tool for the optimum design of a cyclone combustor with low emission.

Research on Desulfurization and Dust Removal Characteristics in Oxy-PC Combustion system (순산소 석탄연소 시스템에서의 탈황·집진 기초 특성)

  • Min, Tai Jin;Keel, Sang In;Yun, Jin Han;Roh, Seon Ah;Han, Bang Woo;Lee, Hyung Keun;Kim, Sang Soo;Lee, Kang Soo;Seo, Sang Il;Kim, Young Ju
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.116-120
    • /
    • 2010
  • $CO_2$ is regarded as one of the greenhouse gases(GHG), which is the main reason of climate change. In order to achieve lower $CO_2$ emissions, several efforts have been conducted worldwide. $CO_2$ capture & storage(CCS) technology development is needed for a coal-fired combustion power plant because of huge $CO_2$emission. Oxy fuel combustion, one of the CCS technologies has been considered as a primary concern, nowadays. Oxy-fuel combustion needs flue gas recirculation(FGR) for stable operation and enrichment of $CO_2$ concentration in the flue gas. FGR adoption for oxy-fuel combustion requires development of effective desulfurization and dust removal technology. In this study, desulfurization characteristics of lime and dust removal technology have been researched in the laboratory scale coal combustor.

Analysis of the Influence of CO2 Capture on the Performance of IGCC Plants (가스화 복합화력발전 플랜트에서 CO2제거가 성능에 미치는 영향 해석)

  • Cha, Kyu-Sang;Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-L.;Joo, Yong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In the power generation industry, various efforts are needed to cope with tightening regulation on carbon dioxide emission. Integrated gasification combined cycle (IGCC) is a relatively environmentally friendly power generation method using coal. Moreover, pre-combustion $CO_2$ capture is possible in the IGCC system. Therefore, much effort is being made to develop advanced IGCC systems. However, removal of $CO_2$ prior to the gas turbine may affect the system performance and operation because the fuel flow, which is supplied to the gas turbine, is reduced in comparison with normal IGCC plants. This study predicts, through a parametric analysis, system performances of both an IGCC plant using normal syngas and a plant with $CO_2$ capture. Performance characteristics are compared and influence of $CO_2$ capture is discussed. By removing $CO_2$ from the syngas, the heating value of the fuel increases, and thus the required fuel flow to the gas turbine is reduced. The resulting reduction in turbine flow lowers the compressor pressure ratio, which alleviates the compressor surge problem. The performance of the bottoming cycle is not influenced much.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

A Numerical Study on the Efficiency of an Industrial Furnace for Oxygen Combustion Conditions (산소부화용 공업로의 운전조건이 열효율에 미치는 영향)

  • Kim, Kang-Min;Lee, Yeon-Kyung;Ahn, Seok-Gi;Kim, Gyu-Bo;Yoo, In;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.82-88
    • /
    • 2015
  • After a reheating furnace installation, the modification of the size and the heat capacity is very difficult. Therefore, the development of design package tool is required for the computation on the correct specifications before the design and the installation. Prior to development of the design tool, a module that calculates the amount of heat loss of each part according to the specifications for determining the thermal efficiency of a continuous heating furnace was developed and applied to the oxy-fuel industrial furnace. Through this, the effects of fuel type, oxygen fraction and recirculation on the efficiency of the furnace of which the output is 110Ton/hour were analyzed. In oxy-fuel combustion condition, the efficiency was 15% higher than air combustion conditions. With the using COG(Coke Oven Gas) instead of LNG, the efficiency was slightly increased. In the air combustion condition, the efficiency was increased about 33% with the preheated air. But, in oxy-fuel condition, the amount of exhaust gas was reduced, so the efficiency was increased about 7%.

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System (100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구)

  • Moon, Ji-Hong;Jo, Sung-Ho;Mun, Tae-Young;Park, Sung-Jin;Kim, Jae-Young;Nguyen, Hoang Khoi;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.400-407
    • /
    • 2019
  • Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as $SO_2$, NO and CO through a flue gas recirculation process. The newly developed $100kW_{th}$ pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of $SO_2$, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% $CO_2$.