• Title/Summary/Keyword: Coal power plant

Search Result 531, Processing Time 0.025 seconds

Characteristics of sintered fly ash-clay body prepared by slip processing and its applicability for foundation soils (슬립 공정으로 제조된 비산재-점토 계 소결체의 물성 및 기반재로의 적용특성)

  • Kang, Seung-Gu;Lee, Yeong-Saeng
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.271-276
    • /
    • 2008
  • The civil engineering properties for the coal fly ash produced from a power plant mixed with sintered powders made from the fly ash-clay slip system were measured and its applicability for the foundation soils was investigated. The F-slip whose dispersion state is 'not good' and C-slip which is re-flocculated by adding a flocculant to a well-dispersed slip were fabricated and then sintered. The sintered body made from C-slip had more uniform microstructure than that of F-slip, therefore, the bulk density and compressive strength were improved. The civil engineering properties such as compression index, compressive strength, permeability coefficient of fly ash were improved by mixing $0.84{\sim}2\;mm$ powders obtained by crushing a sintered body made from C-slip. Therefore, the applicability of mixed powders composing of fly ash and sintered body made from C-slip was confirmed to foundation soils due to its improved civil engineering properties.

A Study on the Oxidation of Sintered $\beta-Sialon$from Coal Fly-Ash (석탄회로부터 제조된 $\beta-Sialon$의 고온산화반응)

  • Kil Dae-Sup;Kim Won-Baek;Lee Jae-Chun;Jang Hee-Dong
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.29-35
    • /
    • 2003
  • $\beta$-Sialon is synthesized by carbo-thermal reduction and nitriding (CTRN) method, using the Fly ash from power plant. $\beta$-Siaion is synthesized at $1,450^{\circ}C$ for 10 hours, and sintered at $1,550 ^{\circ}C$ for 3 hours in nitrogen atmosphere. The XRD analytical results show that the sintered $\beta$-Sialon contains $SiO_2$ and $FeSi_{x}$ of inter-metallic compound. The sintered $\beta$-Sialon is stable against the oxidation at the temperature of 1,31$0^{\circ}C$ for 20 hours. The weight of the sample increases rapidly by oxidation reaction at $1,360^{\circ}C$. The oxide scale is consisted with mullite phase when it is oxidized at the temperature of $1,360 ^{\circ}C$ for 10 hours.

Identification of Potential Source Locations of PM2.5 in Seoul using Hybrid-receptor Models (하이브리드 수용모델을 이용한 서울시 PM2.5 오염원의 위치 추적)

  • Kang, Byung-Wook;Kang, Choong-Min;Lee, Hak-Sung;SunWoo, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.662-673
    • /
    • 2008
  • Two hybrid receptor models, potential source contribution function (PSCF) and concentration weighted tracjectory (CWT), were compared for locating $PM_{2.5}$ sources contributing to the atmospheric $PM_{2.5}$ concentrations in Seoul. The source contribution estimates by chemical receptor model (CMB) receptor model were used to identify better source areas, Among the sources, soil, agricultural burning, marine aerosol, coal-fired power plant and Chinese aerosol were only considered for the study because these sources were more likely to be associated with the long-range transport of air pollutant. Both methods are based on combining chemical data with calculated air parcel backward trajectories. However, the PSCF analyses were performed with trajectories above the $75^{th}$ percentile criterion values, while the CWT analyses used all trajectories. This difference resulted in locating of different sources, which might be helpful to interpret locating of $PM_{2.5}$ sources, High possible source areas in source contribution of soil and agricultural burning contributing to the Seoul $PM_{2.5}$ were inland areas of Heibei and Shandong provinces (highest density areas of agricultural production and population) in China. The "Chinese aerosol" was used as a representative source for the $PM_{2.5}$ originated from urban area in China. High possible source areas for the aerosol were the cities in China where are relatively close to the receptor. This result suggests that Chinese aerosol is likely to be a useful tool in studies on source apportionment and identification in Korea.

Circularity Measurenment of Fly Ash Using Digital Image Processing (디지털 이미지 분석을 이용한 Fly Ash의 원형지수 측정)

  • Lee, Seung-Heun;Kim, Hong-Joo;Bae, Soon-Muk;Lee, Won-Jun;Sakai, Etsuo;Daimon, Masaki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.735-741
    • /
    • 2002
  • This paper investigates circularity of fly ashes using the digital image processing. Fly ashes directly collect from electrostatic precipitator when the load of conditions of boiler are changed at a coal-fired power plant. Circularity measurement can be accomplished in five steps: ① image acquisition, ② grey image processing, ③ detection the component to measure ④ binary image processing ⑤ feature measurement. The mean circularity of fly ashes is in the range of 0.78 to 0.83. fly ashes collected from the same hopper has similar circularity regardless of the load of boiler and circularity increases as going from the 1st hopper to 3rd one, namely as particle size become finer.

Pozzolanic Properties of Fly Ash from a Coal Fired Power Plant (미분탄 화력발전소 플라이 애쉬의 포졸란 특성에 관하여)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.702-708
    • /
    • 2003
  • Cement paste, mortar or concrete specimens, substituting the content of Portland cement with fly ash up to 50 wt%, were prepared to investigate the effect of fly ash on the temperature, free lime content and strength etc. of mortar/concrete. Being compared with the concrete made of ordinary Portland cement, temperature increment of the concrete containing 50 wt% fly ash reduced, according to appropriate conversion formulae, to about 45% at the 7 days curing time: the temperature increment of the former amounted to 33.4$^{\circ}C$, while that of the latter only to 18.7$^{\circ}C$. On the other hand, it is better to control the content of fly ash in the cement that is used for reinforced concrete not to exceed 30 wt%. In this study, more than 28 days curing time is necessary in order that the strength of concrete made of fly ash cement will be higher than that of pure Portland cement. In addition, 28-days concrete strength higher than 360 kg/$\textrm{cm}^2$ could be easily achieved even with 50 wt% fly ash cement.

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

Air Quality Improvement Scenario for China during the 13th Five-Year Plan Period

  • Tang, Qian;Lei, Yu;Chen, Xiaojun;Xue, Wenbo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2017
  • China is suffering from severe air pollution especially fine $PM_{2.5}$ pollution. In 2015, the annual average $PM_{2.5}$ concentration of the 338 municipal cities was $50{\mu}g/m^3$, 78% cities at or above the prefectural level failed to comply with the $PM_{2.5}$ concentration standards. The $13^{th}$ Five-Year Plan for National Economic and Social Development set the goal that the annual average concentration of $PM_{2.5}$ in the municipal cities which failed to attain the ambient air quality standards shall be decreased by 18% by 2020 (CCCPC, 2016). In this study, an air pollution control scenario during the $13^{th}$ Five-Year Plan period was proposed and the $SO_2$, $NO_x$ and PM emission reductions in response to different measures in 31 provincial-level regions mainland China by 2020 were estimated. The air quality in the target year (2020) was simulated using the WRF-CMAQ model. The results showed that by 2020, the emissions of $SO_2$, $NO_x$ and primary PM in mainland China will be reduced by 4.19 million tons, 3.94 million tons and 4.41 million tons, a drop of 23%, 21% and 25% respectively compared with that in 2015, and the annual average concentration of $PM_{2.5}$ will decrease by 19%. Coal-fired power plant contributes the most pollutant emission reduction.

Analysis of Annual Emission Trends of Air Pollutants by Region (권역별 대기오염물질의 연도별 배출 특성 분석)

  • Lim, Jun Hyun;Kwak, Kyeong Kyu;Kim, Jeong;Jang, Young Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.76-86
    • /
    • 2018
  • Using the CAPSS emissions data, we analysed changes and reasons in the annual air pollutant emission trends from 1999 to 2014. The CO emissions in the metropolitan area decreased steadily since 2001, when the latest model year of automobiles and high efficiency fuel were applied. However, other regions have not changed significantly in annual emissions. $NO_x$ emissions continued to increase since 2003, and unchanged after the decline in 2007. $SO_x$ emissions are steadily declining due to the supply of low sulfur oil. The $PM_{10}$ and $PM_{2.5}$ emissions were repeatedly affected by the influence of motor vehicles activities in the metropolitan area. In Gangwon and Chungcheong Provinces, emissions are increasing according to the use of coal in the manufacturing sector. And VOC and $NH_3$ emissions are increasing steadily every year. The major CO emission sources was automobiles in the metropolitan area. However, agricultural residue burning was the biggest CO sources in the Chungchong, Honam and Yeongnam Provinces. The major sources of $NO_x$ emissions differ from region to region. In the Metropolitan area, Honam and Yeongnam region, the truck was the largest emitter of $NO_x$. However, the cement kiln was the largest producer of $NO_x$ in Gangwon region, and the power plant is the largest emitter in Chungcheong Provinces.

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

Microstructure and Mechanical Properties of the Sintered Kaolin Block with Fly Ashes (Fly Ash를 이용한 고령토벽돌의 소결 특성)

  • Lee, Jin-Uk;Lee, Sung-Min;Kim, Hyung-Tae;Choi, Eui-Seok;Lee, Yong-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1164-1170
    • /
    • 2002
  • The effect of fly ash addition to the kaolin block has been investigated. The addition affected the firing temperature and physical properties such as water absorption and compressive strength. The starting materials were from korea natural resources and the fly ash were from the power plant using coal as fuel, containing free carbon of 8∼9 wt%. The starting natural materials were mixed with 5 different proportions of fly ash, pressed and then sintered at 1050, 1100, 1150 and 1200${\circ}C$. With sintering temperature, water absorption decreased and compressive strength increased. When specimens were sintered at the temperature lower than 1100${\circ}C$, water absorption increased and strength decreased with fly ash content. In contrast, when sintering was done at the temperature higher than 1150${\circ}C$, water absorption increased with fly ash content similarly but strength was improved.