• Title/Summary/Keyword: Coal fired power plants

Search Result 177, Processing Time 0.028 seconds

A Study on the Measurement of Whole-Body Vibration in Some Coal-fired Power Plant Workers

  • Heo, Seung-Moo;Lee, Yun Keun;Park, Hee Sok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.341-344
    • /
    • 2013
  • Objective: This study measured and evaluated the characteristics of the whole body vibration experienced in some coal-fired power plant in Korea. Background: Few studies have been carried out in Korea about the effects of whole body vibration of power plants on humans. Method: The evaluation scheme suggested by the Law of Noise and Vibration Control was applied. Results: It was found that 28.9% of total measurement points were above the limit suggested by the law. Conclusion: Many workers are exposed to whole body vibration during their job completion, and more efforts should be applied to prevention and control of the plat vibration.

Modeling and Parameter Identification of Coal Mill

  • Shin, Hwi-Beom;Li, Xin-Lan;Jeong, In-Young;Park, Jong-Man;Lee, Soon-Young
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.700-707
    • /
    • 2009
  • The coal mill used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow and the outlet temperature are modeled by reinvestigating the mass balance and heat balance models physically. The archived data from a plant database are utilized to identify the model parameters. It can be seen that the simulated model outputs are well matched with the measured ones. It is also expected that the proposed model is useful for the controller design.

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

The Study on the Concrete Precast Block using Coal-ash Artificial Aggregate (석탄회 인공골재를 이용한 콘크리트 프리캐스트 블록 연구)

  • 조병완;박승국;김진일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.293-298
    • /
    • 2002
  • Recycling of coal combustion by-product(Ash) are becoming more improtant in the utilization business as a result of the increased use of NOx reduction technologies at coal-fired power plants. current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns that breed negative public opinion. This research made concrete crecast block using coal ash artificial aggregate for environmental-friendly products and compared strength special quality of this block with existent common use brick and analyzed application possibility in situ with a reserve experiment that measured strength property and manufactured method to handle coal ash produced in Bo-ryung thermoelectric power plant.

  • PDF

A Study on the Utilization of Coal Fired Fly-ash as Microfine Grouting Materials (초미립자 지반주입재로서 플라이애쉬의 적용성에 관한 연구)

  • 천병식;김진춘
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.113-125
    • /
    • 1998
  • At the end of 1997 about 3 million tons of coal ash was produced as byproducts from the coal fired electrical power plants in Korea. Only about 27% of that byproducts was utilized as the admixtures of cement and concrete industry. But the large quantity of coal fired fly-ash has been used as the soil improvement materials in other countries. So the aim of this study is the estimation of the applicability of the coal fired fly-ash as microfine grouting materials by admixing the superfine particles which were separated from the coal fired fly-ash for the higher values. The 6 types of specimens were manufactured in the laboratory for the purpose of estimating the chemical and physical properties of cement and grouts. These specimens consisted of 2 specific surfaces of 6, 000 and 8, 000$cm^2$/g in Elaine method. And these specimens are devide into 3 ratios (30%, 50%, 70%) of fly-ash by weight. From the estimated properties of the coal fired fly-ash microflne cements and grouts, 50% fly-ash is the most suitable ratio for grouting materials. However, further study of durability is necessary for using fly-ash grouts practically at the field projects. The higher content of the unburned carbon of fly-ash increases the thinner layer of carbon on the surface of solution of grouts, and requires more quantity of surface active agent. As a results of this study, it is found that the microfine fly-ash is very useful as a good grouting material if 50% of fly-ash is added with the microfine portland cement. So, in the near future, if the coal fired fly-ash is able to be used as grouting material in Korea, the demand of fly-ash will increase rapidly.

  • PDF

Development of CO2 Emission Factor by Fuel and CO2 analysis at Sub-bituminous Fired Power Plant (연료와 CO2 농도분석을 이용한 아역청탄 화력발전소의 온실가스 배출계수 개발)

  • Jeon, Eui-Chan;Sa, Jae-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • The main purpose of this study was to develop the greenhouse gas emission factor for power plant using sub-bituminous coal. In Korea, Fired power plant are a major source of greenhouse gases within the fossil fuel combustion sectors, thus the development of emission factors is necessary to understand the characteristics of the national specific greenhouse gas emission and to develop nation specific emission factors. These emission factors were derived from the $CO_2$ concentrations measurement from stack and fuel analysis of sub-bituminous coal. Caloric value of sub-bituminous coal used in the power plants were 5,264 (as received basis), 5,936 (air-dried basis) and 6,575 kcal/kg (dry basis). The C emission factors by fuel analysis and $CO_2$ concentration measurement was estimated to be 26.7(${\pm}0.9$), 26.3(${\pm}2.8$)tC/MJ, respectively. Our estimates of C emission factors were comparable with IPCC default value.

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.

High Temperature SO2-gas Corrosion of Fe-18%Cr-10%Ni Steels for Coal-fired Power Plant (화력발전소용 Fe-18%Cr-10%Ni 강의 고온 SO2 가스 부식)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.219-224
    • /
    • 2007
  • The corrosion characteristics of Fe-18Cr-10Ni steels were studied between $600^{\circ}C$ and $1000^{\circ}C$ in Ar+(0.2, 1)%$SG_2$ gas for up to 300 hr in order to employ Fe-18Cr-10Ni steels in the coal-fired power plants. The corrosion resistance of Fe-18Cr-10Ni steels was good due mainly to the high amount of Cr, which formed $Cr_2O_3$ from the initial corrosion stage. Fe in the steels corroded to mainly $Fe_2O_3$ and $Fe_3O_4$. Ni was not susceptible to corrosion under the current corrosion condition. Relatively thin, single-layered scales formed.

Characteristics of Unburned Material Derived from Coal-fired Power Plant Burning Low Grade Coal (저급탄 연소 석탄회의 미연물질 특성 분석)

  • Park, Ho-Young;Kim, Young-Ju;Kim, Tae-Hyung;Baek, Se-Hyun;Kim, Kyung-Soo;Jeoung, Kwon-Dal
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Sub-bituminous coals have been used increasingly in coal-fired power plants with a proportion of over 50% in the blend with bituminous coals. As a result, the unburned material in fly ash has increased and is causing problems in utilizing the fly ash as an additive for concrete production. In this study, analysis of fly ash obtained from a 500 MWe power plant was carried out and unburned material in the fly ash found to be soot. The coals used in the plant were analyzed with CPD model to investigate the sooting potential depending on the coal type and blending ratio.

The Study on the ECO Artificial Precast Block using Coal-ash (석탄회를 이용한 환경친화적 프리캐스트 블록의 개발)

  • 조병완;권병윤;박승국;김진일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1015-1020
    • /
    • 2002
  • Recycling of coal combustion by-product(Ash) are becoming more improtant in the utilization business as a result of the increased use of NOx reduction technologies at coal-fired power plants. Current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns that breed negative public opinion. This research made Precast block for environment-friendly secondary product and compare strength special quality of this block with existent common use brick and analyze application possibility in situ with a reserve experiment that measure strength property and manufacture method to handle coal ash produced in Bo-ryung thermoelectric power plant.

  • PDF