• Title/Summary/Keyword: Coal burner

Search Result 91, Processing Time 0.021 seconds

GASIFICATION OF CARBONEOUS WASTES USING THE HIGH TEMPERATURE REFORMER

  • Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2005
  • Gasification of carbonaceous wastes such as shredded tire, waste lubricating oil, plastics, and powdered coal initiates a single-stage reforming reactor(reformer) Without catalyst and a syngas burner. Syngas is combusted with $O_2$ gas in the syngas burner to produce $H_2O\;{and}\;CO_2$ gas with exothermic heat. Reaction products are introduced into the reforming reactor, reaction heat from syngas burner elevates the temperature of reactor above $1,200^{\circ}C$, and hydrogen gas fraction reaches 65% of the product gas output. Reactants and heat necessary for the reaction are provided through the syngas burner only. Neither $O_2$ gas nor steam is injected into the reforming reactor. Multiple syngas burners may be connected to the reforming reactor in order to increase the syngas output, and the product syngas is recycled into syngas burner.

Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace (미분탄 연소로에서 연소특성에 미치는 석탄특성에 관한 연구)

  • Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Cheon-Sung;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.737-747
    • /
    • 2009
  • This study is to investigate the effect of the moisture, volatile matter and particle size in the coal on the pulverized coal combustion characteristics using CFD. The results show that as the moisture content in coal increases, flame temperature decreases because of heat loss driven from latent heat of vaporization and reduction of heating value. As the volatile matter content in the coal increases, the temperature in the region near the burner increases, while the temperature in rear region of boiler decreases. The solution to keep the temperature in the rear region of boiler is suggested that particle size is needed to be larger. As the particle size increases, the temperature in the rear region of boiler show tendency to increase, for combustion burning time of coal could be extended.

Study on Instantaneous Structure of Turbulent Pulverized Coal Flame by Simultaneous Measurement (동시계측에 의한 난류 미분탄 화염의 순간구조에 관한 연구)

  • Hwang, Seung-min
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.309-317
    • /
    • 2018
  • In this study, a laser sheet technique and PLIF (Planar laser-induced fluorescence) are applied to a laboratory-scale pulverized coal burner of the open type, and the spatial relationship of the pulverized coal particle zone and the combustion reaction zone is examined by simultaneous measurement of Mie scattering and OH-LIF images. It is found that this technique can be used to investigate the spatial relationship of the combustion reaction zone and pulverized-coal particles in turbulent pulverized-coal flames without disturbing the combustion reaction field. In the upstream region, the combustion reaction occurs only in the periphery of the clusters where high-temperature burned gas of the methane pilot flame is entrained and oxygen supply is sufficient. In the downstream region, however, combustion reaction can be seen also within clusters of pulverized-coal particles, since the temperature of pulverized-coal particles rises, and the mixing with emitted volatile matter and ambient air is promoted.

Reduction of unburned carbon derived from coal-fired power plant by changing operating conditions (운전조건병경에 의한 미분탄화력의 미연분 저감)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Guen-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.299-303
    • /
    • 2006
  • From the analysis of fly ash, which contains unburned carbon, collected from the coal-fired Yong Hung power station, most particles are turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD model. The results show that the higher potential presented to Peabody, Arthur, Shenhua coals rather than other coals. It is necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unburned carbon in ash by increasing the excess air and changing the SOFA yaw angle.

  • PDF

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

Pulverized Coal Injection System Development to Raise Combustion Efficiency of a Blast Furnace (고로미분탄 취입랜스의 연소효율 향상을 위한 노즐 제어의 최적화)

  • Choi, Seung-Hyun;Kwak, Na-Soo;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.690-696
    • /
    • 2009
  • This paper introduces the automatic fine Bituminous Coal injection lance position control method using flame image process. The fine Coal injection lance is used to supply additional heat into the furnace in Mill plant. It injects fine coal into high pressured air flow and produces very heated and high pressured flame. For the such high temperature and pressure, the fine coal injection lance effects not only efficiency of burner but also furnace abrasion. To keep efficient combustion status and to avoid the abrasion, in this paper, the flame is monitored by computer image process. This paper proposes the flame image process method and lance position control according to calculated result for flame image process.

  • PDF

A Numerical Study for Optimum Configuration of Pulverized Coal Nozzle to Prevent Uneven Distribution of Particle (분사된 미분탄의 편중분포 방지를 위한 내부장치 최적화에 관한 수치 해석적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.270-279
    • /
    • 2000
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutants emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle configuration. Basically, nozzle which has mixed flow of gas and particle is required to have the balanced coal concentration at exit, but it is very difficult to obtain that by itself without help of other device. In this study, coal distribution and pressure drop in gas-solid flow are calculated by numerical method in nozzle with various shapes of venturi diffuser as a means to get even coal particle distribution. The tentative correlations of pressure drop and exit coal distribution are deduced as function of the height, length and reducing angle of venturi from the calculated results. When coal hurner nozzle is designed, these equations are very useful to optimize the shape of venturi which minimize uneven particle distribution and pressure drop within coal nozzle.

A Numerical Study on Combustion Characteristics for Various Configurations of Oxy-PC Burners (전산유동 해석을 이용한 Oxy-PC 버너 형상 변화에 따른 화염 특성 연구)

  • Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.43-46
    • /
    • 2012
  • The oxygen concentration of primary oxidizer is decided under 10% due to flammable risk. It can be a spontaneous combustion inside burner or tube if the excess oxygen is added to primary oxidizer in Oxy-PC burner. In this case, the rest oxygen which can not be injected to primary oxidizer should be injected to another port. If added it to a second oxidizer, the ignition is unstable at outlet of burner. Accordingly an extra lancing port is needed to insert into the burner unlike other common air mode. And the flame formation and combustion characteristic differ from lancing port position. Therefore we observed flame formation which has stable combustion characteristic according to the shape and position of lancing port.

  • PDF

Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter (입자분리기 최적 설계를 위한 다상 유동 해석)

  • Yok, Sim-Kyun;Ryu, Jae-Wook;Ik-Hyeong;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.