• Title/Summary/Keyword: Coal based reduction

Search Result 50, Processing Time 0.022 seconds

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

Phase Transition and Metalization of DRI According to the Quality of Iron Oxide

  • Yun, Young Min;Jung, Jae Hyun;Seo, Sung Kwan;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • Direct reduced iron was made using an electric furnace. The reduction ratio of direct reduced iron varied depending on the grade of iron ore. Coal played an important role as a reducing agent in making the direct reduced iron. The coal must contain a suitable amount of volatile components having high calorie values and low impurity content. In this study, oxidized pellets were directly reduced using anthracite as a reductant in an electric furnace. Direct reduction behaviors of hematite and magnetite pellets were confirmed in a coal-based experiment. Reduction behaviors were demonstrated by analyzing the chemical compositions, measuring the reducibility, and observing the phase changes and microstructure. The superior reducibility of hematite pellets can be ascribed to their high effective diffusivity, which is due to their high porosity. The quickly after reducing for 40min and achieves a high value at the end of the reduction.

Simplified 1-Dimensional Model of Gas-Solid Reactor : Adapting to Coal Reduction Rotary Kiln (1차원 기체-고체 반응기 모델의 로터리킬른 환원로 적용)

  • Hahn, Taekjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.75-78
    • /
    • 2012
  • Rotary kiln furnace is one of the most widely used reactors in industrial field. In this paper, 0-dimensional heat and mass balance for direct coal flame rotary kiln was performed preferentially, then a simplified 1-dimensional model was developed based on 0-dimensional analysis data to proceed additional thermal analysis. Compared the results with the currently operating rotary kiln data to validate 1-dimensional model. Through this procedure, it can help to derive fundamental idea for design and operation of rotary kiln.

  • PDF

Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler (순환유동층 보일러에서 무연탄-유연탄의 혼합연소 특성)

  • Jeong, Eui-Dae;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study investigated the characteristics of co-combustion of mixed anthracite (domestic and Vietnam) and bituminous coal (Sonoma, Australia) at circulating fluidized bed boiler in Donghae thermal power plant when mixing ratio of bituminous coal is variable. Co-combustion of bituminous coal contributes to improvement in general combustion characteristics such as moderately retaining temperature of furnace and recycle loop, reducing unburned carbon powder, and reducing discharge concentration of NOx and limestone supply owing to improvement in anthracite combustibility as the mixing ratio was increased. However, bed materials were needed to be added externally when the mixing ratio exceeded 40% because of reduction in generating bed materials based on reduction in ash production. When co-combustion was conducted in the section of 40 to 60% in the mixing ratio while the supplied particles of bituminous coal was increased from 6 mm to 10 mm, continuous operation was shown to be possible with upper differential pressure of 100 mmH2O (0.98 kPa) and more without addition of bed materials for the co-combustion of mixed anthracite and bituminous coal (to 50% or less of the ratio) and that of domestic coal and bituminous coal (to 60% of the ratio).

  • PDF

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation (석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향)

  • Lim, Jiyong;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • This study analyzed the effect of power output reduction in coal fired power generation on the change of system marginal price and green house gas emissions. Analytical method was used for electricity market forecasting system used in korea state owned companies. Operating conditions of the power system was based on the the 7th Basic Plan for Electricity Demand and Supply. This as a reference, I analyzed change of system marginal price and green house gas emission by reduced power output in coal fired power generation. The results, if the maximum output was declined as 29 [%] to overall coal-fired power plant, system marginal price is reduced 12 [%p] compared to before and decreasing greenhouse gas emissions were 9,966 [kton]. And if the low efficiency coal fired power plant that accounted for 30 [%] in overall coal-fired power plant stopped by year, system marginal price is reduced 14 [%p] compared to before and decreasing greenhouse gas emissions were 12,874 [kton].

  • PDF

China's Fossil Fuel Market and IGCC (중국의 석탄 에너지 시장과 IGCC)

  • Zhang, Yanping;Ku, Jayeol;Um, Shingyoung;Kim, Suduk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.137.2-137.2
    • /
    • 2010
  • With current real economic growth of more than 10% per year, the Chinese energy consumption is rapidly increasing. Coal supply consists of the vast majority of China's total energy consumption requirements in 2008. China, the largest energy consumer, is expected to be heavily dependent on coal for future power generation, too (IEA,2009). A growing concern on global warming, on the other hand, drives Chinese government to declare her commitment to the reduction of CO2 emission by 2020. In this paper, China's energy market is examined for the current and future primary energy mix. Coal is found to be the biggest part accounting for 68.7% of total primary energy consumption while coal-fired power accounts for over 80% of the total power generation. The importance of Clean Coal Technology is being discussed based on the findings of the importance of coal in China's economy and its sustainable development. Among the technologies involved, a brief investigation of IGCC(Integrated Gasification Combined Cycle) technology with a review on current IGCC projects in China are provided from the perspective of environmental benefits. Studies on regional Chinese power market is also conducted. It is found that the regulated power tariff in electricity system makes the power suppliers suffer from financial loss and changes in the electricity price system is under serious consideration by Chinese government. Even though Chinese power market system causes difficulties of commercialization for IGCC technology, the potential benefits will be high due to China's huge requirements of power generating capacity and its heavy reliance on coal if the electricity price system can be changed smoothly.

  • PDF

Scenario Analysis of Low-Carbon Generation Mix Considering Social Costs (사회적 비용을 고려한 저탄소 전원구성의 시나리오 분석)

  • Park, Jong-Bae;Cho, Young-Tak;Roh, Jae Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.173-178
    • /
    • 2018
  • This study organizes scenarios on the power supply and demand plans considering the uncertainties and the portion of distributed energy resources. In analysing the scenarios, it estimates total electricity supply cost in the social aspect, natural gas demand and air pollutants emission including carbon dioxide. Also the analysis is performed to estimate the marginal cost of carbon dioxide reduction for the fuel switching from coal to liquified natural gas. In result, the social cost could be decreased by replacing some portion of renewable energy by LNG-based combined heat and power and delaying the construction of large base-load generators such as coal and nuclear plants. The marginal carbon dioxide reduction cost by fuel switching is in plausible range for fuel switching to be an option for carbon dioxide emission reduction when the social cost is considered.

The Removal Characteristics of Bromate using Various Materials in GAC Process (다양한 재질의 활성탄을 이용한 GAC 공정에서의 브로메이트 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Jung, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.747-752
    • /
    • 2009
  • This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of bromate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as 9252 bed volume (BV), 6821 BV, 5291 BV and 2431 BV, respectively. The experimental results of adsorption capacity (X/M) for bromate showed that two coal- based GACs were highest (1334.5 and 798.2 ${\mu}g$/g), the coconut-based GAC was intermediate (668.6 ${\mu}g$/g) and the wood-based GAC was lowest (156.8 ${\mu}g$/g). The X/M of the coal-based GACs was 2~8.5 times higher than the X/M of the coconut-based and wood-based GACs. The results of carbon usage rates (CURs) for the virgin two coal-, coconut- and wood-based GACs were shown as 0.19, 0.25, 0.33 and 0.71 g/day respectively. The adsorption capacity, k values, were also investigated by means of the GACs for bromate. The k values of two coal-, coconut- and wood- based GACs for bromate were found to be 121.3, 76.7, 43.3 and 14.6 respectively. This results suggested that using the virgin GAC made of coal was the best selection for removal of bromate in the water treatment for an advanced treatment.

Policy research and energy structure optimization under the constraint of low carbon emissions of Hebei Province in China

  • Sun, Wei;Ye, Minquan;Xu, Yanfeng
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • As a major energy consumption province, the issue about the carbon emissions in Hebei Province, China has been concerned by the government. The carbon emissions can be effectively reduced due to a more rational energy consumption structure. Thus, in this paper the constraint of low carbon emissions is considered as a foundation and four energies--coal, petroleum, natural gas and electricity including wind power, nuclear power and hydro-power etc are selected as the main analysis objects of the adjustment of energy structure. This paper takes energy cost minimum and carbon trading cost minimum as the objective functions based on the economic growth, energy saving and emission reduction targets and constructs an optimization model of energy consumption structure. And empirical research about energy consumption structure optimization in 2015 and 2020 is carried out based on the energy consumption data in Hebei Province, China during the period 1995-2013, which indicates that the energy consumption in Hebei dominated by coal cannot be replaced in the next seven years, from 2014 to 2020, when the coal consumption proportion is still up to 85.93%. Finally, the corresponding policy suggestions are put forward, according to the results of the energy structure optimization in Hebei Province.