• Title/Summary/Keyword: Coal Yard

Search Result 14, Processing Time 0.021 seconds

Analysis of Runoff Characteristics of NPS Pollution through long-term monitoring from Coal yard (장기모니터링을 통한 저탄장의 비점오염물질 유출특성 분석)

  • Shin, Jae-Young;Shin, Min-Hwan;Choi, Yong-Hun;Lee, Su-In;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.888-888
    • /
    • 2012
  • 본 연구는 3년(2008~2011년)간의 연구기간동안 저탄장에서 발생하는 유량과 수질농도를 분석하여 저탄장의 비점오염 유출특성을 파악하고자 하였다. 연구지점은 강원도 태백시에 위치한 가행 광산으로써 광산작업으로 인해 생산되는 비축탄(석탄과 광재)을 저장하는 대규모 저탄시설이다. 저탄장에는 강우로 인해 발생하는 강우유출수의 오염물질 배출량을 줄이기 위해 콘크리트 배수로와 침사지 시설이 설치되어 있다. 침사지를 거쳐 하천으로 유입되기 전에 강우유출수의 모니터링을 위해 모니터링 시설(유량계, 자동수질시료채취기, 강우량계)을 설치하여 유량과 농도를 측정하였다. 또한 정확한 강우량 측정을 위해 자기우량계를 설치하였다. 연구결과 강우에 의해 유출이 발생한 최저 강우량은 6.0 mm 인 것으로 나타났으며, 강우사상의 강우량은 6.0~248.4 mm의 범위로 나타났다. 이때 평균 강우강도는 0.6~13.1 mm/hr 인 것으로 나타났으며, 강우에 발생한 강우유출수의 유출률은 0.02~0.40으로 나타났다. 저탄장의 경우 저탄장의 표면을 비닐 캔버스로 덮어두기 때문에 불투수층이 많아 6.0 mm 정도의 적은양의 강우가 발생해도 유출이 발생하는 것으로 나타났다. 각 강우사상의 EMC 농도는 SS 6.5~712.3 mg/L, $COD_{Cr}$ 11.6~263.9 mg/L, $COD_{Mn}$ 3.4~106.8 mg/L, $BOD_5$ 1.0~56.0 mg/L, TN 0.145~5.600 mg/L, TP 0.101~2.526 mg/L, DOC 0.6~22.0 mg/L로 나타났다. 저탄장에서 측정된 수질농도는 기존 가행 광산에 관한 연구에 비해 SS 농도가 낮게 산정 되었으며, 이는 저탄장에 설치되어 있는 침사지 시설의 영향인 것으로 판단된다. 본 연구의 결과는 저탄장에서 발생하는 비점오염원의 유출특성을 파악하고, 모델링이나 환경정책에 필요한 기초자료로 활용할 수 있을 것으로 판단된다. 그러나 강우량, 면적, 피복율 또는 침사지 시설 등의 영향에 대한 추가적인 모니터링을 통한 다각적인 분석의 연구가 진행되어야 할 것으로 판단된다.

  • PDF

Basic study of new concept environment-friendly pile foundations with earthquake resistant foundation and lateral reinforcement on rapid-transit railway bridge (고속철도교 기초 내진 및 수평저항성능 보강형 신개념 친환경말뚝 신공법의 실용화 기초연구)

  • SaGong, Myung;Paik, Kyu-Ho;Lim, Hae-Sik;Cho, Kook-Hwan;Na, Kyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.880-894
    • /
    • 2010
  • The Grout injected precast pile is widely used in rapid-transit railway bridge recently. The existing portland cement of well used filling at injected precast method that with low strength and environmental pollution, unstable in which ground water contamination by cement flow out, ground relaxation by water down, decrease of horizontality resistance and durability and load transfer divide etc. In particular, as in rapid-transit railway bridge need to secure safety from different angle with vibration of high speed train, horizontal force when train stop and earthquake. Works of foundation construction consider to requirements of the times to coal yard green growth. Together, new green foundation method for possible economics and securing of reduce the term of works are material to developments. Therefore, we carried out study that it is using and development new concept environment - friendly filling include durability and earthquake resistance, for secure safety and minimize environment pollution. To achieve this, we carried out difference tests that new green fillings of underwater concrete, high liquidity, high viscosity, early stiffness as compared to existing portland cement fillings. As results, new green filling have outstanding application at precast pile method and micropile construction method with vertical bearing capacity, horizontal bearing capacity and many case. From now on we will be looking forward to development of new environment-friendly foundation method from various further studies.

  • PDF

Experimental Study on Moisture Content According to Addition of Surfactants (계면활성제 첨가에 따른 함수율에 관한 실험적 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.

Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard (발전소 저탄장에 적용되는 풀코드스위치 부품의 구조최적화 3D 프린팅 제작기술 개발)

  • Lee, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.319-330
    • /
    • 2016
  • Recently, 3D printing technology has been applied to make a concept model and working mockup of an industrial application. On the other hand, this technology has limited applications in industrial products due to the materials and reliability of the 3D printed product. In this study, the components of a full cord switch module are proposed as a case of a 3D printed component that can be used as a substitute for a short period. These are hub-driven and lever lockup components that have the structural characteristics of breaking down frequently in the emergency operating status. To ensure the structural strength for a substitute period, research of structure optimization was performed because 3D printing technology has a limitation in the materials used. After optimizing the structure variables of the hub-driven component, reasonable results can be drawn in that the safety factors of the left and right switching mode are 1.243 (${\Delta}153.67%$) and 3.156 (${\Delta}404.96%$). The lever lockup component has a structural weak point that can break down easily on the lockup-part because of a cantilever shape and bending moment. The rib structure was applied to decrease the deflection. In addition, optimization of the structural variables was performed, showing a safety factor of 7.52(${\Delta}26%$).