• Title/Summary/Keyword: Coal Stockpile

Search Result 5, Processing Time 0.021 seconds

Numerical Study on the Effects of Surface-Inhibitors for the Prevention of Spontaneous Combustion of the Coal Stockpile

  • Kim, Jae-Kwan;Park, Seok-Un;Jang, Ji-Hoon;Joo, Yong-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • In this paper, the effects of the spontaneous combustion inhibitor on the surface of the coal stockpile in the coal yard was investigated by numerical analysis. First, the numerical analysis method of the present study was compared with the results of the previous study by analyzing the case in which the spontaneous combustion inhibitor was not applied, while the effects of spraying the spontaneous combustion inhibitor for the prevention of spontaneous combustion onto various areas and positions was also analyzed. As a result, the larger the application area of the spontaneous combustion inhibitor, then the more effective it is for preventing spontaneous combustion as it blocks the oxygen inflow into the coal stockpile, while, when spraying the spontaneous combustion inhibitor from the bottom of the coal stockpile, then the greater the effect it has on the prevention of spontaneous combustion. In conclusion, it was most effective to spray the spontaneous combustion inhibitor from the bottom of the coal stockpile up to about 30% of the height of the coal stockpile, when considering the economic aspect.

Numerical Study on Spontaneous Combustion in Coal Stockpile (저탄장에서의 석탄 자연발화에 관한 수치 해석적 연구)

  • HONG, JINPYO;KIM, JAEKWAN;CHI, JUNHWA;PARK, SUKWOON;SEO, DONGGYUN;LEE, JINHYANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.721-728
    • /
    • 2017
  • In this work, an one-dimensional analysis on spontaneous combustion in a coal stockpile was conducted using a commercial software $gPROMS^{(R)}$ based on assumption suggested by Arioy and Akgun. According to them, it is assumed that there is temperature difference between the surface of coal particle and the gas surrounded around the particle, and it is also assumed that the velocity of the gas is constant and thus oxygen is fed to the stockpile with same velocity. The higher temperature zone is formed to the surface of the coal stockpile at the initial phase and it became deepen as time is taken. Finally it was found that the temperature difference between coal particle and the gas was calculated as $57^{\circ}C$ and spontaneous combustion have not been occurred during 6 months since coal was piled in the stock.

Numerical Study on the Effects of Surface-inhibitors on the Spontaneous Ignition of Coal Stockpile (저탄장 자연발화에 미치는 표면차단제 영향에 관한 수치 해석적 연구)

  • Kim, Jae-Kwan;Park, Seok-Un;Shin, Dong-ik
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.20-29
    • /
    • 2019
  • In this paper, the effect of spontaneous combustion inhibitor on the surface of coal stockpile in coal yard was investigated by numerical analysis. First, the numerical analysis method of the present study was compared with the results of the previous study by analyzing the case where the spontaneous combustion inhibitor was not applied, and the effect of preventing spontaneous combustion by various areas and positions for spraying spontaneous combustion inhibitor was analyzed. As a result, the larger the application area of the spontaneous combustion inhibitor, the more the effect of preventing spontaneous combustion by blocking the oxygen inflow into the coal stockpile, and the greater the effect of the spontaneous combustion prevention when spraying spontaneous combustion inhibitor from the bottom of the coal stockpile. Spontaneous combustion inhibitor should be sprayed effectively, considering the economic aspects, such as manufacturing cost etc.

Numerical Study on the Phenomenon of Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 현상의 수치해석적 연구)

  • Kim, Chul-Jin;Park, I-Sun;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.721-727
    • /
    • 2010
  • The spontaneous ignition of coal stockpile causes serious safety and economic problems. Such spontaneous ignition occurs in coal stockpile when the rate of heat released by the oxidation of coal is greater than the rate of heat lost to the surroundings. In this study, a two-dimensional unsteady model is adopted for studying spontaneous ignition and the numerical results are compared with experimental results. The numerical results are in a good agreement with the experimental ones. Depending on the porosity, the internal maximum temperature, pressure, and oxygen mass fraction during spontaneous ignition are investigated. On the basis of the numerical results, the transient temperature variations for several shapes of coal stockpiles are analyzed. Further, the physical mechanisms of hot-spot formation and spontaneous ignition are analyzed.

A Stress Analysis for Pressure Vessel to Prevent Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 방지를 위한 압력용기의 응력 해석)

  • Kim, Young In;Kim, Seung Hun;Jie, Min-Seok;Yeum, Chan Sub;Choi, Won Hyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.205-212
    • /
    • 2018
  • Spontaneous ignition is not only severe economic damage but also a typical plant damage caused by harmful gases generated during the fire. Because coal is porous, it causes oxygen to be absorbed in the amount of oxygen per unit weight of oxygen, resulting in low humidity and low thermal conductivity. The cause and effect of spontaneous ignition are very complex, so it is difficult to prevent it beforehand and once it is difficult to digest it, it is difficult to digest it. This study examines structural safety by conducting a structural analysis of the cooling ball system to prevent spontaneous combustion of coal stockpile plants and external pressures.