• Title/Summary/Keyword: CoPt crystal

Search Result 34, Processing Time 0.018 seconds

Structural characterization of Pt/Co modulated films by X-ray diffraction (X선회절에 의한 Pt/Co 인공격자 다층막의 구조평가)

  • 김찬욱;조남웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.341-348
    • /
    • 1997
  • X-ray diffraction patterns of Pt/Co modulated films prepared by RF comagnetron sputtering method was investigated. Modulated films ([$Pt10.7\AA/Co2.8{\AA}{\times}{12}$]) were deposited on glass substrate with various sputtering conditions : sputtering with variations of gas pressures, sputtering with Xe instead Ar gas, and etching of the buffer layers. In order to obtain the structural information of Pt/Co modulated films, the structural model was constructed and calculated data of the model were compared with experimental ones. Comparison results showed that there were good agreements in satellite peak position and its intensity between them. This suggests that the realistic Pt/Co modulated film can be reproduced by our structure model.

  • PDF

Effects of process temperature on the microstructure and magnetic properties of electrodeposited Co-Pt alloy thin films (전해도금 공정온도가 Co-Pt 합금 박막의 미세구조 및 자기적 특성에 미치는 영향)

  • Lee, C.H.;Jeong, G.H.;Park, J.K.;Lee, K.K.;Suh, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.87-90
    • /
    • 2008
  • Co-Pt alloy thin films were galvanostatically electrodeposited on Ru (30 nm)/Ta (5 nm)/Si (100) substrates from a amino-citrate based electrolyte. We used Ru(0002)-oriented buffer layers to control the crystallinity and orientation of the Co-Pt alloy thin films. The effect of solution temperature on the microstructure and magnetic properties of the Co-Pt alloy thin film was investigated. The samples were characterized by EDS, FESEM, XRD diffractometer using Cu $K{\alpha}$ radiation. The magnetic properties of these films were analyzed by a VSM and torque magnetometer. The Co-Pt alloy thin films were exhibited very high out-of-plane coercivity and squareness of the multilayer were 6527 Oe and 0.93, respectively, without heat treatment.

Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.290-298
    • /
    • 2018
  • In order to investigate the effect of thickness on the dielectric and piezoelectric properties of (001) PMN-29PT single crystals, three different types of PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: high density crystal [99%], low density crystal [95%], and high density crystal doped with Mn [98.5%]. When their thickness decreased from 0.5 mm to 0.05 mm, their dielectric constant ($K_3{^T}$), piezoelectric constants ($d_{33}$ and $g_{33}$), and electromechanical coupling factor ($k_t$) decreased continuously. However, their dielectric loss (tan ${\delta}$) increased. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$), increased the coercive electric field ($E_C$), and prevented local depoling. Therefore, Mn-doped PMN-PT crystals show high stability as well as high performance, even in the form of very thin plates (< 0.2 mm), and thus are suitable for application to high frequency composites, medical ultrasound probes, non-destructive testing devices (NDT), and flexible devices.

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Synthesis of PZT thin films made by PZ/PT multi-layered structure (PZ/PT 다층막에 의한 PZT 박막의 제작)

  • Kim, S.D.;Jeon, K.B.;Bae, S.H.;Jin, B.M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.105-108
    • /
    • 2008
  • Four different thin films were made by depositing PZ and PT in different stacking sequences. PZ and PT phases are preferably co-existed in sample A and C that are annealing after each coatings. The sample B and D, on the other hands, have tendency toward the PZT phase after co-firing the sample. The sample B that started from PT stacking first was more stable PZT phase than that of PZ first sample D.

Magnetic Properties and Crystallization of Co-pt Amorphous Metallic Alloys

  • Yoo, Chung-Sik;Lim, Sung-K.;Yoon, C.S.;Kim, C.K.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.113-117
    • /
    • 2003
  • $Co_{78-x}Pt_xB_{10}Si_{12}$ alloys were produced using the melt-spin process in order to study the crystallization behavior and ensuing magnetic properties of the $Co_{78-x}Pt_xB_{10}Si_{12}$ (Co-Pt) amorphous alloys as a function of the Pt content. We showed that when $\chi$ $>$ 15 well below its stoichiometric composition, CoPt crystallized in the amorphous alloy, thus greatly altering the crystallized microstructure and magnetic properties during annealing. Below this composition, the main crystallization product was Co with Pt dissolved in its lattice. In spite of the nucleation of CoPt with high magnetic anisotropy, the highest coercivity was obtained when x was 15. It was also concluded that the Pt addition deteriorated the glass stability, triggering the devitrification at a progressively lower temperature.

Revisiting $H_2$ and CO Interactions with Pt(111) Surfaces

  • Kim, Je-Heon;Jo, Sam-K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.203-203
    • /
    • 2011
  • The importance of stepped single-crystal surfaces as model catalysts has been well recognized [1]. We re-investigated the adsorption properties of $H_2$ and CO, most important species in platinum-based catalysts, on nearly defect-free and highly stepped surfaces of one and the same Pt(111) crystal. While both being symmetric and single-peaked from the nearly defect-free surface, temperature-programmed desorption (TPD) spectra from the highly stepped surface saturated at 90 K with H and CO were triply- and doubly-peaked, respectively. Once pre-adsorbed, CO preempted step and then terrace sites, inhibiting the dissociative $H_2$ adsorption completely. Pre-adsorbed H inhibited the CO adsorption on terrace sites only, leaving defect sites intact for CO adsorption even at the saturation H precoverage. On defect-free Pt(111), while pre-adsorbed CO inhibited the dissociative $H_2$ adsorption completely, pre-adsorbed H could not inhibit the CO adsorption completely. These intriguing, but interesting results are discussed in terms of energetics/kinetics and the role of surface step sites in the dissociative adsorption of $H_2$ on Pt(111) [2].

  • PDF

Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC (탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성)

  • Jung, Dong-Won;Park, Soon;Kang, Jung-Tak;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.