• Title/Summary/Keyword: CoPP

Search Result 263, Processing Time 0.032 seconds

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

Rheology of PP/Clay Hybrid Produced by Supercritical $CO_2$ Assisted Extrusion

  • Lee, Sang-Myung;Shim, Dong-Cheol;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2008
  • Polypropylene (PP)-layered silicate nanocomposites were developed using a new processing method involving a supercritical carbon dioxide ($scCO_2$)-assisted co-rotating twin-screw extrusion process. The nanocomposites were prepared through two step extrusion processes. In the first step, the PP/clay mixture was extruded with $CO_2$ injected into the barrel of the extruder and the resulting foamed extrudate was cooled and pelletized. In the second step, the foamed extrudate was extruded with venting to produce the final PP/clay nanocomposites without $CO_2$. In this study, organophilic-clay and polypropylene matrix were used. Maleic anhydride grafted polypropylene (PP-g-MA) was used as a compatibilizer. This study focused on the effect of $scCO_2$ on the dispersion characteristics of the clays into a PP matrix and the rheological properties of the layered silicate based PP nanocomposites. The dispersion properties of clays in the nanocomposites as well as the rheological properties of the nanocomposites were examined as a function of the PP-g-MA concentration. The degree of dispersion of the clays in the nanocomposites was analyzed by X-ray diffraction and transmission electron microscope. Various rheological properties of the nanocomposites were measured using a rotational rheometer. In the experimental results, the $scCO_2$ assisted continuous manufacturing extrusion system was used to successfully produce the organophilic-clay filled PP nanocomposites. It was found that $scCO_2$ had a measurable effect on the clay dispersion in the polymer matrix and the melt intercalation of a polymer into clay layers.

Interface Charateristics of Plasma co-Polymerized Insulating Film/Pentacene Semiconductor Film (플라즈마 공중합 고분자 절연막과 펜타센 반도체막의 계면특성)

  • Shin, Paik-Kyun;Lim, H.C.;Yuk, J.H.;Park, J.K.;Jo, G.S.;Nam, K.Y.;Park, J.K.;Kim, Y.W.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1349_1350
    • /
    • 2009
  • Thin films of pp(ST-Co-VA) were fabricated by plasma deposition polymerization (PVDPM) technique. Properties of the plasma polymerized pp(ST-Co-VA) thin films were investigated for application to semiconductor device as insulator. Thickness, dielectric property, composition of the pp(ST-Co-VA) thin films were investigated considering the relationship with preparation condition such as gas pressure and deposition time. In order to verify the possibility of application to organic thin film transistor, a pentacene thin film was deposited on the pp(ST-Co-VA) insulator by vacuum thermal evaporation technique. Crystalline property of the pentacene thin film was investigated by XRD and SEM, FT-IR. Surface properties at the pp(ST-Co-VA)/pentacene interface was investigated by contact angle measurement. The pp(ST-Co-VA) thin film showed a high-k (k=4.6) and good interface characteristic with pentacene semiconducting layer, which indicates that it would be a promising material for organic thin film transistor (OTFT) application.

  • PDF

Effect of NADPH Oxidase Inhibition on Heme Oxygenase-1 Expression in Human Hepatoma Cell Line HepG2 (인간 간암세포주 HepG2에서 NADPH oxidase 활성 억제에 의한 heme oxygenase-1 발현의 조절)

  • Lee, Sang-Kwon;Kim, Kang-Mi;Park, Kwang-Hoon;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1625-1630
    • /
    • 2011
  • Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. In this study, we investigated the role of NADPH oxidase on the expression of HO-1 in human liver hepatoma cell line HepG2. Diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, markedly inhibited HO-1 expression and the nuclear translocation of transcription factor Nrf2 in cobalt protoporphyrin (CoPP) or hemin-treated HepG2 cells. Similarly, the knockdown of $p47^{phox}$, a cytosolic factor for NADPH oxidase activity, by siRNA inhibited the CoPP-induced expression of HO-1. In addition, GSHmee, an intracellular antioxidant, blocked the expression of HO-1 in CoPP-treated cells. Based on these results, we conclude that the blockage of NADPH oxidase with DPI or $p47^{phox}$ siRNA inhibits CoPP-induced HO-1 expression in HepG2 cells, and also suggest that the expression of HO-1 in CoPP-induced HepG2 cells is associated with increase of intracellular ROS by NADPH oxidase activity.

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

A Study on Polypropylene and Surface Modified PET Fiber Composites (표면처리된 PET 섬유와 PP 복합재료에 관한 연구)

  • Hahm, Moon-Seok;Kim, Chang-Hyeon;Ryu, Ju-Whan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • We confirmed that poly (ethylene terephthalate) (PET) fiber had the possibility to improve the mechanical properties of polypropylene (PP) by fabricating PP/PET fiber composites because PET enhanced mechanical properties and higher melting temperature than PP. But lower compatibility of between PP and PET fibers induced poor mechanical properties of PP/PET fiber composites in spite of incorporating PP-g-MAH as compatibilizer. To solve these problems of PP/PET fiber composites, we carried out a surface treatment on PET fiber using NaOH solution and Prepared PP/PET fiber composites with good mechanical properties by adding PP-g-MAH as a compatibilizer Then the behavior of the mechanical properties was correlated with the results obtained from SEM and IR spectroscopy.

Effects of Heme Oxygenase-1 on VEGF Expression in Rheumatoid Arthritis (류마티스 관절염에서 HO-1에 의한 VEGF 발현 유도에 대한 연구)

  • Lee, Seung-Hoon;Kwan, Sang-Chul;Byun, Seung-Jae;Jang, Sung-Jo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • Heme oxygenase-1 (HO-1), an inducible heme-degrading enzyme, is expressed by macrophages and endothelial cells in response to various stresses and mediators of inflammation. HO-1 has been recently implicated in regulation of angiogenesis via expression of VEGF. The purpose of this study was to determine the effects of HO-1 modulation on the collagen-induced arthritis (CIA) model and on angiogenesis via up- regulation of VEGF expression in human synovial fibroblast. DBA/1J mice were treated with an inhibitor of HO-1, tin protoporphyrin IX (SnPP), or with an inducer of HO-1, cobalt protoporphyrin IX (CoPP), from day 1 to day 35 after CIA induction. The clinical evolution of disease was monitored visually. At the end of the experiment, histopathologic changes were examined on the joints. VEGF expression in paws were measured by immunohistochemical stain. mRNA expression of HO-1 and VEGF stimulated with various concentration of $TNF-{\alpha}$, CoPP accessed on human synovial fibroblast by RT-PCR. Effects of pretreatment with SnPP on mRNA expression of HO-1 and VEGF in the presence of CoPP and $TNF-{\alpha}$ in synovial fibroblast was accessed by Real-time RT-PCR. Administration of cobalt protoporphyrin IX significantly induced the inflammatory response, with increased arthritis index and expression of VEGF in the paws of the arthritis models. Treatment with SnPP significantly reduced the severity of CIA through inhibition of joint inflammation and cartilage destruction. The expression of VEGF were also significantly reduced by SnPP treatment in the paw. CoPPIX as inducer of HO-1, increased HO-1 and VEGF expression dose dependently in synovial fibroblast. In contrast, inhibition of HO-1 activity by SnPPIX abrogated CoPPIX-induced HO-1 and VEGF production in synovial fibroblast. Stimulation with $TNF-{\alpha}$ increased HO-1 and VEGF expression itself and showed additive effect on HO-1 and VEGF expression when it treated with CoPP. When SnPP was treated with CoPP and $TNF-{\alpha}$, it abrogated the CoPP induced HO-1 and VEGF expression and also abrogated $TNF-{\alpha}$ induced HO-1 and VEGF expression in synovial fibroblast. The effects of HO-1 induction in rheumatoid arthritis results in aggravation of arthritis via up-regulation of VEGF. I concluded that inhibition of the expression or activity of HO-1 could be a therapeutic target of rheumatoid arthritis.

A Study of the Optimization of the Compounded PP Using the DOE (실험계획법을 이용한 복합 폴리프로필렌의 최적화 연구)

  • Park, Sung-Ho;Lim, Dong-Cheol;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • In order to formulate the compounded polypropylene(C-PP) which is suitable to an automotive door trim panel, 9 sorts of properties were measured after manufacturing the C-PP using an extruder and an injection machine with polypropylene(PP), ethylene-octene rubber(EOR) and talc. Mixture design, especially extreme vertices design, in DOE with MINITAB - commercial software was used to analyze the data. The relations between each property and each component, for example, $y=0.00907222x_1+0.00870556x_2+0.0155722x_3$ for specific gravity, were found out by the regression analysis and the variance analysis. The optimized formulation of the C-PP for an automotive door trim panel was acquired at PP(77.6962), EOR(11.0238) and talc(10.2800) by use of the response optimizer(mixture) in MINITAB.

Conformational Analyses for Hydrated Oligopeptides by Quantum Chemical Calculation (양자화학적 계산에 의한 올리고펩티드 수화물의 구조분석)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.95-104
    • /
    • 2018
  • The structures and energies of the anhydrate and hydrate (hydrate rate: h of 1) states of L-alanine (LA) and glycine (G) were calculated by quantum chemical calculations (QCCs) using B3LYP/6-31G(d,p) for four types of conformers (${\beta}$-extended: ${\Phi}/{\Psi}=t-/t+$, $PP_{II}$: g-/t+, $PP_{II}$-like: g-/g+, and ${\alpha}$-helix: g-/g-). In LA and G, which have an imino proton (NH), three conformation types of ${\beta}$-extended, $PP_{II}$-like, and ${\alpha}$-helix were obtained, and water molecules were inserted mainly between the intra-molecular hydrogen bond of $CO{\cdots}HN$ in $PP_{II}$-like and ${\alpha}$-helix, and attached to the CO group in ${\beta}$-extended. In LA and G, $PP_{II}$-like conformers were most stable in the anhydrate and hydrate states, and the result for LA was different from some experimental and theoretical results from other studies reporting that the main stable conformation of alanine oligopeptide was $PP_{II}$. The formation pattern and stability of the conformation of the oligopeptide was strongly dominated by the presence/absence of intra-molecular hydrogen bonding of $CO{\cdots}HN$, or the presence/absence of an $NH_2$ group in the starting amino acid.