• 제목/요약/키워드: Co-word Occurrence Analysis

검색결과 72건 처리시간 0.021초

Predicting the Adoption of Health Wearables with an Emphasis on the Perceived Ethics of Biometric Data

  • Tahereh Saheb;Tayebeh Saheb
    • Asia pacific journal of information systems
    • /
    • 제31권1호
    • /
    • pp.121-140
    • /
    • 2021
  • The main purpose of this research is to understand the strongest predictors of wearable adoption among athletes with an emphasis on the perceived ethics of biometric data. We performed a word co-occurrence study of biometrics research to determine the ethical constructs of biometric data. A questionnaire incorporating the Unified Theory of Acceptance and Use of Technology (UTAUT), Health Belief Model and Biometric Data Ethics was then designed to develop a neural network model to predict the adoption of wearable sensors among athletes. Our model shows that wearable adoption's strongest predictors are perceived ethics, perceived profit, and perceived threat; which can be categorized as professional stressors. The key theoretical contribution of this paper is to extend the literature on UTAUT by developing a predictive modeling of factors affecting acceptance of wearables by athletes, and highlighting the ethical implications of athlete's adoption of wearables.

소셜미디어를 통한 우울 경향 이용자 담론 주제 분석 (An Analysis of the Discourse Topics of Users who Exhibit Symptoms of Depression on Social Media)

  • 서하림;송민
    • 정보관리학회지
    • /
    • 제36권4호
    • /
    • pp.207-226
    • /
    • 2019
  • 우울증은 전 세계적으로 많은 사람들이 겪고 있으며, 최근 다양한 분야에서 꾸준히 우울증에 대한 연구가 수행되고 있다. 특히 사람들이 본인의 스트레스나 감정 상태에 대해 소셜미디어에 공유한 글을 통해 그들의 심리나 정신건강에 대해 파악해보고자 하는 맥락에서 소셜미디어를 활용한 연구 역시 유의미하게 받아들여지고 있다. 이에 본 연구에서는 우울 경향의 이용자와 그렇지 않은 이용자들의 2016년부터 2019년 2월까지의 트위터 데이터를 수집하여 어떤 주제적, 어휘 사용의 특성을 보이는지 보고자 하였으며, 우울 경향의 시기별로도 어떤 차이를 보이는지 살펴보기 위해 우울 경향 관측 날짜를 기준으로 하여 이전(before) 시기와 이후(after) 시기를 구분하여 실험을 수행하였다. 토픽모델링, 동시출현 단어분석, 감성분석 방법을 통해 우울 경향과 비(非)우울 경향 이용자의 텍스트의 주제적 차이를 살펴보았고, 감성 반응에 따라 사용한 어휘에 대해서도 살펴봄으로써 어떠한 특성이 있는지 확인해 보았다. 데이터 수집 단계에서 '우울' 표현을 포함한 텍스트 데이터 수집방법을 통해 비교적 긴 기간, 많은 양의 데이터를 수집할 수 있었고, 또한 우울 경향의 여부와 시기적 구분에 따른 관심 주제에 대한 차이도 확인할 수 있었다는 점에서 유의미하다고 볼 수 있다.

토픽 모델링과 동시출현 단어 분석을 활용한 환자안전 관련 사회적 이슈의 변화 (An Analysis of Changes in Social Issues Related to Patient Safety Using Topic Modeling and Word Co-occurrence Analysis)

  • 김나리;이남주
    • 한국콘텐츠학회논문지
    • /
    • 제21권1호
    • /
    • pp.92-104
    • /
    • 2021
  • 본 연구의 목적은 온라인 뉴스 기사를 분석하여 환자안전에 대한 사회적 이슈를 확인하고, 환자안전법 시행 이전과 시행 이후 사회적 이슈의 변화를 확인하기 위함이다. R 프로그램을 이용하여 2010년 1월 1일부터 2020년 3월 5일까지 총 7600건의 온라인 뉴스 기사를 수집하였으며, 키워드 분석, 토픽 모델링, 동시출현 네트워크 분석을 시행하였다. 2609개의 키워드는 다음의 8가지 주제로 범주화되었다 : "의료행위", "의료인력", "감염 및 시설", "간호·간병통합서비스", "의약품", "개선을 위한 시스템 개발 및 구축", "환자안전법", "의료기관 인증". 그리고 환자안전법 시행 이전에는 환자안전 인식, 감염관리, 의료기관 인증 등의 키워드가 등장하였으나 시행 이후에는 환자안전 문화, 투약 등의 키워드가 등장하였으며 간호의 중요도 순위가 상승하였다. 의료계뿐 아니라 대중에게도 환자안전에 관한 관심은 높아지고 있으며, 환자안전 향상에 간호의 역할은 중요하다. 따라서 환자안전을 간호의 핵심 역량으로 삼고 지속적인 교육을 해나가야 할 것이다.

딥러닝 및 토픽모델링 기법을 활용한 소셜 미디어의 자살 경향 문헌 판별 및 분석 (Examining Suicide Tendency Social Media Texts by Deep Learning and Topic Modeling Techniques)

  • 고영수;이주희;송민
    • 한국비블리아학회지
    • /
    • 제32권3호
    • /
    • pp.247-264
    • /
    • 2021
  • 자살은 전 세계 사망 원인 중 4위이며 사회, 경제적 손실이 큰 난제이다. 본 연구는 자살 예방을 위하여 소셜미디어에 나타난 자살 관련 말뭉치를 구축하고 이를 통해 자살 경향 문헌을 분류할 수 있는 딥러닝 자동분류 모델을 만들고자 하였다. 또한, 자살 요인을 분석하기 위해 주제를 자동으로 추출하는 분석 기법인 토픽모델링을 활용하여 자살 관련 말뭉치를 세부 주제로 분류하고자 하였다. 이를 위해 소셜미디어 중 하나인 네이버 지식iN에 나타난 자살 관련 문헌 2,011개를 수집한 후 자살예방교육 매뉴얼을 기준으로 자살 경향 문헌 및 비경향 문헌 여부를 주석 처리하였으며, 이 데이터를 딥러닝 모델(LSTM, BERT, ELECTRA)로 학습시켜 자동분류 모델을 만들었다. 또한, 토픽모델링 기법의 하나인 LDA 기법으로 주제별 문헌을 분류하여 자살 요인을 발견하였고 이를 심층적으로 분석하기 위해 주제별로 동시출현 단어 분석 및 네트워크 시각화를 진행하였다.

심리학적 언어분석 프로그램 개발을 위한 융합연구: 기존 프로그램의 비교와 관련 문헌의 동향 분석 (A Convergence Study for Development of Psychological Language Analysis Program: Comparison of Existing Programs and Trend Analysis of Related Literature)

  • 김영준;최원일;김태훈
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.1-18
    • /
    • 2021
  • 내용어 기반 빈도 분석은 의도적 기만이나 반어적 표현에 분명한 한계가 있지만, 많이 사용되는 한국어 분석 프로그램인 KLIWC는 기능어 분석을, KrKwic는 동시출현빈도를 시각화하는 방법으로 발전했다. 하지만 개발된 지 십수 년이 지나 여러 문제점으로 개선이 필요한 상황이다. 그래서 KLIWC와 KrKwic를 분석하여 새 심리학적 언어분석 프로그램을 개발하고자 하였다. 첫째로 두 프로그램의 특징을 분석하였다. 특히, 기능어 분석기능 제고를 위해서 KLIWC와 한국어 형태소 분석기의 형태소 분류를 비교하였고, 심리적 분석의 강화를 위해 심리사전의 구조와 체계를 분석하였다. 분석 결과 한나눔 품사 분석기가 가장 세분화되었지만, 인칭대명사에서는 KLIWC가, 어미와 어말어미에서는 KKMA의 품사 분류가 더 세분화되어 있어, 기능어 분석 강화를 위해 여러 품사 분석기의 통합적 사용을 제안하였다. 둘째로 이 프로그램들로 텍스트를 분석한 연구들의 연구동향을 분석하였다. 분석 결과 두 프로그램이 복합학 분야 등 다양한 학술분야에서 사용되고 있었다. 특히 논문과 보고서의 분석에는 KrKwic가 많이 사용되었고, 글쓴이의 생각, 정서, 성격 비교 연구에는 KLIWC가 많이 사용되었다. 이 결과를 바탕으로 새로운 심리학적 언어분석 프로그램의 필요성과 개발 방향에 대해 제언하였다.

언어 네트워크 분석을 이용한 과학의 본성에 관한 국내연구 동향 (Research Trends of Studies Related to the Nature of Science in Korea Using Semantic Network Analysis)

  • 이상균
    • 대한지구과학교육학회지
    • /
    • 제9권1호
    • /
    • pp.65-87
    • /
    • 2016
  • The purpose of this study is to examine Korean journals related to science education in order to analyze research trends into Nature of science in Korea. The subject of the study is the level of Korean Citation Index (KCI-listed, KCI listing candidates), that can be searched by the key phrase, "Nature of science" in Korean language through the RISS service. In this study, the Descriptive Statistical Analysis Method is utilized to discover the number of research articles, classifying them by year and by journal. Also, the Sementic Network Analysis was conducted to Word Cloud Analysis the frequency of key words, Centrality Analysis, co-occurrence and Cluster Dendrogram Analysis throughout a variety of research articles. The results show that 91 research papers were published in 25 journals from 1991 to 2015. Specifically, the 2 major journals published more than 50% of the total papers. In relation to research fields., In addition, key phrases, such as 'Analysis', 'recognition', 'lessons', 'science textbook', 'History of Science' and 'influence' are the most frequently used among the research studies. Finally, there are small language networks that appear concurrently as below: [Nature of science - high school student - recognize], [Explicit - lesson - effect], [elementary school - science textbook - analysis]. Research topic have been gradually diversified. However, many studies still put their focus on analysis and research aspects, and there have been little research on the Teaching and learning methods.

2계층 유사관계행렬 구축을 통한 질의 처리 (Fuzzy Query Processing through Two-level Similarity Relation Matrices Construction)

  • 이기영
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권10호
    • /
    • pp.587-598
    • /
    • 2003
  • 본 연구에서는 학술논문을 대상으로 하여 표제와 초록에 대한 2단계 색인어 유사관계행렬을 구축하였다. 동시출현빈도 기반으로 구축된 색인어 유사관계행렬은 호환관계에 따른 질의 확장으로 재현률을 유지하면서 2단계 내용기반 검색으로 정확률을 향상시키기 위한 색인구조이다. 따라서, 주제 분석을 통해 영역지식을 추출하고 이용자의 정보 요구와 영역지식을 퍼지논리 기반으로 추론하였다. 본 연구는 질의에 본질적으로 가지고 있는 용어 불일치 및 정보표현을 향상시키기 위한 연구이다.

  • PDF

Conceptual Extraction of Compound Korean Keywords

  • Lee, Samuel Sangkon
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.447-459
    • /
    • 2020
  • After reading a document, people construct a concept about the information they consumed and merge multiple words to set up keywords that represent the material. With that in mind, this study suggests a smarter and more efficient keyword extraction method wherein scholarly journals are used as the basis for the establishment of production rules based on a concept information of words appearing in a document in a way in which author-provided keywords are functional although they do not appear in the body of the document. This study presents a new way to determine the importance of each keyword, excluding non-relevant keywords. To identify the validity of extracted keywords, titles and abstracts of journals about natural language and auditory language were collected for analysis. The comparison of author-provided keywords with the keyword results of the developed system showed that the developed system was highly useful, with an accuracy rate as good as up to 96%.

소셜 빅데이터 기반 2016리우올림픽 축구 관련 이슈 및 인물에 대한 연관단어 분석 (Social Big Data-based Co-occurrence Analysis of the Main Person's Characteristics and the Issues in the 2016 Rio Olympics Men's Soccer Games)

  • 박성건;이수원;황영찬
    • 한국체육학회지인문사회과학편
    • /
    • 제56권2호
    • /
    • pp.303-320
    • /
    • 2017
  • 본 연구의 목적은 소셜 빅데이터를 기반으로 리우올림픽 축구 관련 이슈 및 인물에 대한 대중들의 주요 관심사를 알아보는 것이다. 본 연구를 위해 수집된 데이터는 2016 리우올림픽 한국축구 경기와 관련된 웹 뉴스 및 댓글이다. 경기별 주요 이슈 및 대중들의 관심사를 알아보기 위해 연관단어 분석을 실시하고, NodeXL을 이용하여 시각화하였다. 연구 결과, 대중들에게 높은 관심을 받은 경기는 피지와의 경기, 한국축구대표팀 관련 인물은 손흥민, 해설위원은 이영표, 캐스터는 조우종으로 나타났다. 리우올림픽에 출전한 한국축구대표팀에 대한 대중들의 생각은 일부 부정적인 평가가 나타났지만, 대체로 긍정적인 것으로 평가할 수 있다. 해설위원 및 캐스터에 대한 대중들의 관심은 경기결과 및 예측, 설명에 대한 재치, 해설위원 및 캐스터의 호흡, 즐거움 요소(예능)로 나타났다. 결론적으로, 스포츠빅이벤트에 대한 대중들의 관심을 높일 수 있는 방안은 다양한 스포츠 분석 콘텐츠 제공, 전문성과 예능감 등을 겸비한 방송해설자 선정이 될 수 있다.

Analysis of University Unification Education Research Trends Using Text Network Analysis and Topic Modeling

  • Do-Young LEE
    • 웰빙융합연구
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: This study analyzed papers identified by entering the two keywords 'unification education' and 'university' during research from 2013 to 2022 in order to identify trends and key concepts in unification education research at domestic universities. Research design, data, and methodology: The study analyzed 224 papers, excluding those on primary, middle, and high school unification education, as well as unrelated and duplicate papers. The analysis included developing a co-occurrence network of keywords, utilizing topic modeling to categorize research types, and confirming visualizations such as word clouds and sociograms. Results: In the final analysis, the research identified 1,500 keywords, with notable ones like 'Korea,' 'education,' 'unification.' Centrality analysis, measuring influence through connected keywords, revealed that 'Korea,' 'education,' 'north,' and 'unification' held significant positions. Keywords with high centrality compared to their frequency included 'learning,' 'development,' 'training,' 'peace,' and 'language,' in that order. Conclusions: This study investigated trends and structures in university-level unification education by analyzing papers identified with the keywords 'unification education' and 'university.' The use of keyword network analysis aimed to elucidate patterns and structures in university-level unification education. The significance of the study lies in offering foundational data for future research directions in the field of unification education at universities.