• Title/Summary/Keyword: Co-word Occurrence Analysis

Search Result 72, Processing Time 0.02 seconds

A Study on Web Archiving Subject Analysis Based on Network Analysis (네트워크 분석을 기반으로 한 웹 아카이빙 주제영역 연구)

  • Kim, Hee-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.2
    • /
    • pp.235-248
    • /
    • 2011
  • In this study, co-word occurrence analysis was performed on 288 articles rerieved from the Web of Science DB with the topic of web archiving. Results showed that research on image archiving information technology and system were most frequently carried out especially in medical area. Within library and information science and records management & archives areas, web archiving/digital preservation project subject and web archiving tools and methodology subject were studied mostly. It is expected that research related to web archiving software and tools will be increased in near future.

Research Trends Analysis on ESG Using Unsupervised Learning

  • Woo-Ryeong YANG;Hoe-Chang YANG
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.3
    • /
    • pp.47-66
    • /
    • 2023
  • Purpose: The purpose of this study is to identify research trends related to ESG by domestic and overseas researchers so far, and to present research directions and clues for the possibility of applying ESG to Korean companies in the future and ESG practice through comparison of derived topics. Research design, data and methodology: In this study, as of October 20, 2022, after searching for the keyword 'ESG' in 'scienceON', 341 domestic papers with English abstracts and 1,173 overseas papers were extracted. For analysis, word frequency analysis, word co-occurrence frequency analysis, BERTopic, LDA, and OLS regression analysis were performed to confirm trends for each topic using Python 3.7. Results: As a result of word frequency analysis, It was found that words such as management, company, performance, and value were commonly used in both domestic and overseas papers. In domestic papers, words such as activity and responsibility, and in overseas papers, words such as sustainability, impact, and development were included in the top 20 words. As a result of analyzing the co-occurrence frequency of words, it was confirmed that domestic papers were related mainly to words such as company, management, and activity, and overseas papers were related to words such as investment, sustainability, and performance. As a result of topic modeling, 3 topics such as named ESG from the corporate perspective were derived for domestic papers, and a total of 7 topics such as named sustainable investment for overseas papers were derived. As a result of the annual trend analysis, each topic did not show a relatively increasing or decreasing tendency, confirming that all topics were neutral. Conclusions: The results of this study confirmed that although it is desirable that domestic papers have recently started research on consumers, the subject diversity is lower than that of overseas papers. Therefore, it is suggested that future research needs to approach various topics such as forecasting future risks related to ESG and corporate evaluation methods.

Descriptor Profiling for Research Domain Analysis (연구영역분석을 위한 디스크립터 프로파일링에 관한 연구)

  • Kim, Pan-Jun;Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.4
    • /
    • pp.285-303
    • /
    • 2007
  • This study aims to explore a new technique making complementary linkage between controlled vocabularies and uncontrolled vocabularies for analyzing a research domain. Co-word analysis can be largely divided into two based on the types of vocabulary used: controlled and uncontrolled. In the case of using controlled vocabulary, data sparseness and indexer effect are inherent drawbacks. On the other case, word selection by the author's perspective and word ambiguity. To complement each other, we suggest a descriptor profiling that represents descriptors(controlled vocabulary) as the co-occurrence with words from the text(uncontrolled vocabulary). Applying the profiling to the domain of information science implies that this method can complement each other by reducing the inherent shortcoming of the controlled and uncontrolled vocabulary.

Topic-Network based Topic Shift Detection on Twitter (트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구)

  • Jin, Seol A;Heo, Go Eun;Jeong, Yoo Kyung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.285-302
    • /
    • 2013
  • This study identified topic shifts and patterns over time by analyzing an enormous amount of Twitter data whose characteristics are high accessibility and briefness. First, we extracted keywords for a certain product and used them for representing the topic network allows for intuitive understanding of keywords associated with topics by nodes and edges by co-word analysis. We conducted temporal analysis of term co-occurrence as well as topic modeling to examine the results of network analysis. In addition, the results of comparing topic shifts on Twitter with the corresponding retrieval results from newspapers confirm that Twitter makes immediate responses to news media and spreads the negative issues out quickly. Our findings may suggest that companies utilize the proposed technique to identify public's negative opinions as quickly as possible and to apply for the timely decision making and effective responses to their customers.

Analysis of Laughter Therapy Trend Using Text Network Analysis and Topic Modeling

  • LEE, Do-Young
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.33-37
    • /
    • 2022
  • Purpose: This study aims to understand the trend and central concept of domestic researches on laughter therapy. For the analysis, this study used total 72 theses verified by inputting the keyword 'laughter therapy' from 2007 to 2021. Research design, data and methodology: This study performed the development and analysis of keyword co-occurrence network, analyzed the types of researches through topic modeling, and verified the visualized word cloud and sociogram. The keyword data that was cleaned through preprocessing, was analyzed in the method of centrality analysis and topic modeling through the 1-mode matrix conversion process by using the NetMiner (version 4.4) Program. Results: The keywords that most appeared for last 14 years were laughter therapy, depression, the elderly, and stress. The five topics analyzed in thesis data from 2007 to 2021 were therapy, cognitive behavior, quality of life, stress, and the elderly. Conclusions: This study understood the flow and trend of research topics of domestic laughter therapy for last 14 years, and there should be continuous researches on laughter therapy, which reflects the flow of time in the future.

Text Mining Driven Content Analysis of Social Perception on Schizophrenia Before and After the Revision of the Terminology (조현병과 정신분열병에 대한 뉴스 프레임 분석을 통해 본 사회적 인식의 변화)

  • Kim, Hyunji;Park, Seojeong;Song, Chaemin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.4
    • /
    • pp.285-307
    • /
    • 2019
  • In 2011, the Korean Medical Association revised the name of schizophrenia to remove the social stigma for the sick. Although it has been about nine years since the revision of the terminology, no studies have quantitatively analyzed how much social awareness has changed. Thus, this study investigates the changes in social awareness of schizophrenia caused by the revision of the disease name by analyzing Naver news articles related to the disease. For text analysis, LDA topic modeling, TF-IDF, word co-occurrence, and sentiment analysis techniques were used. The results showed that social awareness of the disease was more negative after the revision of the terminology. In addition, social awareness of the former term among two terms used after the revision was more negative. In other words, the revision of the disease did not resolve the stigma.

Analysis of Mission, Vision and Core values in Korean Tertiary General Hospitals Through Text Mining (텍스트 마이닝을 통한 상급종합병원의 미션, 비전, 핵심가치 분석 연구)

  • Ji-Hoon Lee
    • Korea Journal of Hospital Management
    • /
    • v.28 no.2
    • /
    • pp.32-43
    • /
    • 2023
  • Purposes: This research is conducted to identify main features and trends of mission, vision and core values in Korean tertiary general hospitals by using text-mining. Methodology: For the study, 45 mission, 112 vision and 190 core values are collected from 45 tertiary general hospitals' homepages in 2022 and use word frequency analysis and Leyword co-occurrence analysis. Findings: In the tertiary general hospitals' mission, there are high frequency words such as 'health', 'humanity', 'medical treatment', 'education', 'research', 'happiness', 'love', 'best', 'spirit', and mission mainly includes the content of contributing humanity's health and happiness with these words. In case of vision, high frequency words are 'hospital', 'medical treatment', 'research', 'lead', 'trust', 'centered', 'patient', 'best', 'future'. By using these words in vision, it represents the definition and characteristics of vision such as ideal organizations in the future, goals and targets. As a result of the Leyword co-occurrence analysis, vision includes the content of 'high-tech medical treatment', 'special care for patients', 'leading education and research', 'the highest trust with customer', 'creative talents training'. -astly, the high frequency word-pairs in core values are 'social distribution', 'innovation pursuit', 'cooperation and harmony', and it defines standards of behavior for organizations. Practical Implication: To correct the problems of vision, mission and core values from findings, firstly, it needs for Korean tertiary general hospitals to use the words that can explain organization's identity and differentiate others in their mission. Secondly, considering strengthening the role of hospitals in their community and the importance of members in organizations, it is necessary to establish vision with considering community and members to activate vision effectively. Thirdly, because there are no specific guidelines of establishing mission, vision and core values for healthcare organizations, this research concepts and results could be utilized when other organizations establish mission, vision and core values.

  • PDF

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Text Mining Driven Content Analysis of Ebola on News Media and Scientific Publications (텍스트 마이닝을 이용한 매체별 에볼라 주제 분석 - 바이오 분야 연구논문과 뉴스 텍스트 데이터를 이용하여 -)

  • An, Juyoung;Ahn, Kyubin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • Infectious diseases such as Ebola virus disease become a social issue and draw public attention to be a major topic on news or research. As a result, there have been a lot of studies on infectious diseases using text-mining techniques. However, there is no research on content analysis of two media channels that have distinct characteristics. Accordingly, in this study, we conduct topic analysis between news (representing a social perspective) and academic research paper (representing perspectives of bio-professionals). As text-mining techniques, topic modeling is applied to extract various topics according to the materials, and the word co-occurrence map based on selected bio entities is used to compare the perspectives of the materials specifically. For network analysis, topic map is built by using Gephi. Aforementioned approaches uncovered the difference of topics between two materials and the characteristics of the two materials. In terms of the word co-occurrence map, however, most of entities are shared in both materials. These results indicate that there are differences and commonalties between social and academic materials.

Topic Modeling Analysis of Beauty Industry using BERTopic and LDA

  • YANG, Hoe-Chang;LEE, Won-Dong
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2022
  • Purpose: The purpose of this study is identifying the research trends of degree papers related to the beauty industry and providing information which can contribute to the development of the domestic beauty industry and the direction of various research about beauty industry. Research design, data and methodology: This study used 154 academic papers and 189 academic papers with English abstracts out of 299 academic papers. All of these papers were found by searching for the keyword "beauty industry" in ScienceON on August 15, 2022. For the analysis, BERTopic and LDA (Latent Dirichlet Allocation) analysis were conducted using Python 3.7. Also, OLS regression analysis was conducted to understand the annual increase and decrease trend of each topic derived with trend analysis. Results: As a result of word frequency analysis, the frequency of satisfaction, management, behavior, and service was found to be high. In addition, it was found that 'service', 'satisfaction' and 'customer' were frequently associated with program and relationship in the word co-occurrence frequency analysis. As a result of topic modeling, six topics were derived: 'Beauty shop', 'Health education', 'Cosmetics', 'Customer satisfaction', 'Beauty education', and 'Beauty business'. The trend analysis result of each topic confirmed that 'Beauty education' and 'Health education' are getting more attention as time goes by. Conclusions: The future studies must resolve the extreme polarization between the structure of the small beauty industry and beauty stores. Furthermore, the researches have to direct various ways to create the performance of internal personnel. The ways to maximize product capabilities such as competitive cosmetics and brands are also needed attentions.